×

Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning. (English) Zbl 07409914

Summary: The physics-informed neural networks (PINNs) can be used to deep learn the nonlinear partial differential equations and other types of physical models. In this paper, we use the multi-layer PINN deep learning method to study the data-driven rogue wave solutions of the defocusing nonlinear Schrödinger (NLS) equation with the time-dependent potential by considering several initial conditions such as the rogue wave, Jacobi elliptic cosine function, two-Gaussian function, or three-hyperbolic-secant function, and periodic boundary conditions. Moreover, the multi-layer PINN algorithm can also be used to learn the parameter in the defocusing NLS equation with the time-dependent potential under the sense of the rogue wave solution. These results will be useful to further discuss the rogue wave solutions of the defocusing NLS equation with a potential in the study of deep learning neural networks.

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter

References:

[1] Krizhevsky, A.; Sutskever, I.; Hinton, G. E., Imagenet classification with deep convolutional neural networks, (Advances in Neural Information Processing Systems (2012)), 1097-1105
[2] Lake, B. M.; Salakhutdinov, R.; Tenenbaum, J. B., Human-level concept learning through probabilistic program induction, Science, 350, 1332-1338 (2015) · Zbl 1355.68230
[3] Alipanahi, B.; Delong, A.; Weirauch, M. T.; Frey, B. J., Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning, Nat. Biotechnol., 33, 831-838 (2015)
[4] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning (2016), MIT Press · Zbl 1373.68009
[5] Larranaga, P.; Atienza, D.; Diaz-Rozo, J.; Ogbechie, A.; Puerto-Santana, C. E.; Bielza, C., Industrial Applications of Machine Learning (2019), CRC Press
[6] (Johri, P.; Verma, J. K.; Paul, S., Applications of Machine Learning (2020), Springer)
[7] Lagaris, I. E.; Likas, A.; Fotiadis, D. I., Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw., 9, 987-1000 (1998)
[8] Psichogios, D. C.; Ungar, L. H., A hybrid neural network-first principles approach to process modeling, AIChE J., 38, 1499-1511 (1992)
[9] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Inferring solutions of differential equations using noisy multi-fidelity data, J. Comput. Phys., 335, 736-746 (2017) · Zbl 1382.65229
[10] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Machine learning of linear differential equations using Gaussian processes, J. Comput. Phys., 348, 683-693 (2017) · Zbl 1380.68339
[11] Owhadi, H., Bayesian numerical homogenization, Multiscale Model. Simul., 13, 812-828 (2015) · Zbl 1322.35002
[12] Rasmussen, C. E.; Williams, C. K., Gaussian Processes for Machine Learning (2006), MIT Press · Zbl 1177.68165
[13] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Numerical Gaussian processes for time-dependent and non-linear partial differential equations, SIAM J. Sci. Comput., 40, A172-A198 (2017) · Zbl 1386.65030
[14] Raissi, M.; Karniadakis, G. E., Hidden physics models: machine learning of nonlinear partial differential equations, J. Comput. Phys., 357, 125-141 (2018) · Zbl 1381.68248
[15] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175
[16] Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M., TensorFlow: large-scale machine learning on heterogeneous distributed systems, (Operating Systems Design and Implementation (OSDI) (2016)) (2016)
[17] Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; Siskind, J. M., Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res., 18, 1-43 (2018) · Zbl 06982909
[18] Yadav, N.; Yadav, A.; Kumar, M., History of neural networks, (An Introduction to Neural Network Methods for Differential Equations (2015), Springer) · Zbl 1328.92006
[19] Sirignano, J.; Spiliopoulos, K., DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys., 375, 1339-1364 (2018) · Zbl 1416.65394
[20] Han, J.; Jentzen, A.; E, W., Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. USA, 115, 8505-8510 (2018) · Zbl 1416.35137
[21] Bar-Sinai, Y.; Hoyer, S.; Hickey, J.; Brenner, M. P., Learning data-driven discretizations for partial differential equations, Proc. Natl. Acad. Sci. USA, 116, 15344-15349 (2019) · Zbl 1431.65195
[22] Rudy, S. H.; Brunton, S. L.; Proctor, J. L.; Kutz, J. N., Data-driven discovery of partial differential equations, Sci. Adv., 3, Article e1602614 pp. (2017)
[23] Raissi, M.; Yazdani, A.; Karniadakis, G. E., Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations, Science, 367, 1026-1030 (2020) · Zbl 1478.76057
[24] Zhou, Z.; Yan, Z., Solving forward and inverse problems of the logarithmic nonlinear Schrödinger equation with PT-symmetric harmonic potential via deep learning, Phys. Lett. A, 387, Article 127010 pp. (2021) · Zbl 1472.81089
[25] Wang, L.; Yan, Z., Data-driven peakon and periodic peakon travelling wave solutions of some nonlinear dispersive equations via deep learning
[26] Pu, J.; Li, J.; Chen, Y., Soliton, breather and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints, Chin. Phys. B (2021), (in press)
[27] Pu, J.; Li, J.; Chen, Y., Solving localized wave solutions of the derivative nonlinear Schrodinger equation using an improved PINN method
[28] Benjamin, T. B.; Feir, J. E., The disintegration of wave trains on deep water. Part 1. Theory, J. Fluid Mech., 27, 417 (1967) · Zbl 0144.47101
[29] Zakharov, V. E.; Ostrovsky, A., Modulation instability: the beginning, Physica D, 238, 540 (2009) · Zbl 1157.37337
[30] Wang, L.; Yan, Z., Rogue wave formation and interactions in the defocusing nonlinear Schrödinger equation with external potentials, Appl. Math. Lett., 111, Article 106670 pp. (2021) · Zbl 1451.35201
[31] Whitham, G. B., Linear and Nonlinear Waves (1974), J. Wiley and Sons · Zbl 0373.76001
[32] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press · Zbl 0762.35001
[33] Kondor, R., N-body networks: a covariant hierarchical neural network architecture for learning atomic potentials (2018)
[34] Kondor, R.; Trivedi, S., On the generalization of equivariance and convolution in neural networks to the action of compact groups (2018)
[35] Hirn, M.; Mallat, S.; Poilvert, N., Wavelet scattering regression of quantum chemical energies, Multiscale Model. Simul., 15, 827-863 (2017) · Zbl 1365.42030
[36] Mallat, S., Understanding deep convolutional networks, Philos. Trans. - R. Soc. A, 374, Article 20150203 pp. (2016)
[37] Kivshar, Y. S.; Agrawal, G., Optical Solitons: From Fibers to Photonic Crystals (2003), Academic Press
[38] Agrawal, G., Applications of Nonlinear Fiber Optics (2001), Elsevier
[39] Liu, D. C.; Nocedal, J., On the limited memory BFGS method for large scale optimization, Math. Program., 45, 503-528 (1989) · Zbl 0696.90048
[40] Trefethen, L. N., Spectral Methods in MATLAB (2000), SIAM · Zbl 0953.68643
[41] Yang, J., Nonlinear Waves in Integrable and Nonintegrable Systems (2010), SIAM · Zbl 1234.35006
[42] Stein, M., Large sample properties of simulations using Latin hypercube sampling, Technometrics, 29, 143-151 (1987) · Zbl 0627.62010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.