×

Recent developments in complex and spatially correlated functional data. (English) Zbl 07232926

Summary: As high-dimensional and high-frequency data are being collected on a large scale, the development of new statistical models is being pushed forward. Functional data analysis provides the required statistical methods to deal with large-scale and complex data by assuming that data are continuous functions, for example, realizations of a continuous process (curves) or continuous random field (surfaces), and that each curve or surface is considered as a single observation. Here, we provide an overview of functional data analysis when data are complex and spatially correlated. We provide definitions and estimators of the first and second moments of the corresponding functional random variable. We present two main approaches: The first assumes that data are realizations of a functional random field, that is, each observation is a curve with a spatial component. We call them spatial functional data. The second approach assumes that data are continuous deterministic fields observed over time. In this case, one observation is a surface or manifold, and we call them surface time series. For these two approaches, we describe software available for the statistical analysis. We also present a data illustration, using a high-resolution wind speed simulated dataset, as an example of the two approaches. The functional data approach offers a new paradigm of data analysis, where the continuous processes or random fields are considered as a single entity. We consider this approach to be very valuable in the context of big data.

MSC:

65Dxx Numerical approximation and computational geometry (primarily algorithms)
41Axx Approximations and expansions

References:

[1] Abdulah, S., Li, Y., Cao, J., Ltaief, H., Keyes, D. E., Genton, M. G. and Sun, Y. (2019). ExaGeoStatR: A package for large-scale geostatistics in R. Available at arXiv:1908.06936.
[2] Aguilera-Morillo, M. C., Durbán, M. and Aguilera, A. M. (2017). Prediction of functional data with spatial dependence: A penalized approach. Stochastic Environmental Research and Risk Assessment 31, 7-22.
[3] Alfeld, P., Neamtu, M. and Schumaker, L. L. (1996). Fitting scattered data on sphere-like surfaces using spherical splines. Journal of Computational and Applied Mathematics 73, 5-43. · Zbl 0863.65002 · doi:10.1016/0377-0427(96)00034-9
[4] Arnone, E., Azzimonti, L., Nobile, F. and Sangalli, L. M. (2019). Modeling spatially dependent functional data via regression with differential regularization. Journal of Multivariate Analysis 170, 275-295. Special Issue on Functional Data Analysis and Related Topics. · Zbl 1415.62016 · doi:10.1016/j.jmva.2018.09.006
[5] Aston, J. A. D., Pigoli, D. and Tavakoli, S. (2017). Tests for separability in nonparametric covariance operators of random surfaces. The Annals of Statistics 45, 1431-1461. · Zbl 1407.62147 · doi:10.1214/16-AOS1495
[6] Aue, A., Norinho, D. D. and Hörmann, S. (2015). On the prediction of stationary functional time series. Journal of the American Statistical Association 110, 378-392. · Zbl 1373.62462 · doi:10.1080/01621459.2014.909317
[7] Azzimonti, L., Sangalli, L. M., Secchi, P., Domanin, M. and Nobile, F. (2015). Blood flow velocity field estimation via spatial regression with PDE penalization. Journal of the American Statistical Association 110, 1057-1071. · Zbl 1373.62534 · doi:10.1080/01621459.2014.946036
[8] Baladandayuthapani, V., Mallick, B. K., Hong, M. Y., Lupton, J. R., Turner, N. D. and Carroll, R. J. (2008). Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinogenesis. Biometrics 64, 64-73. · Zbl 1274.62715 · doi:10.1111/j.1541-0420.2007.00846.x
[9] Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2015). Hierarchical Modeling and Analysis for Spatial Data. Monographs on Statistics and Applied Probability. 135. Boca Raton, FL: CRC Press. · Zbl 1358.62009
[10] Bel, L., Bar-Hen, A., Petit, R. and Cheddadi, R. (2011). Spatio-temporal functional regression on paleoecological data. Journal of Applied Statistics 38, 695-704. · Zbl 1511.62392
[11] Bernardi, M. S., Sangalli, L. M., Mazza, G. and Ramsay, J. O. (2017). A penalized regression model for spatial functional data with application to the analysis of the production of waste in Venice province. Stochastic Environmental Research and Risk Assessment 31, 23-38.
[12] Bohorquez, M., Giraldo, R. and Mateu, J. (2017). Multivariate functional random fields: Prediction and optimal sampling. Stochastic Environmental Research and Risk Assessment 31, 53-70.
[13] Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications. Lecture Notes in Statistics 149. New York: Springer. · Zbl 0962.60004
[14] Caballero, W., Giraldo, R. and Mateu, J. (2013). A universal kriging approach for spatial functional data. Stochastic Environmental Research and Risk Assessment 27, 1553-1563.
[15] Cardot, H., Ferraty, F. and Sarda, P. (1999). Functional linear model. Statistics & Probability Letters 45, 11-22. · Zbl 0962.62081 · doi:10.1016/S0167-7152(99)00036-X
[16] Chen, K., Zhang, X., Petersen, A. and Müller, H.-G. (2017). Quantifying infinite-dimensional data: Functional data analysis in action. Statistics in Biosciences 9, 582-604.
[17] Crainiceanu, C. M., Caffo, B. S., Luo, S., Zipunnikov, V. M. and Punjabi, N. M. (2011). Population value decomposition, a framework for the analysis of image populations. Journal of the American Statistical Association 106, 775-790. · Zbl 1229.62088 · doi:10.1198/jasa.2011.ap10089
[18] Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. Wiley Series in Probability and Statistics. Hoboken, NJ: John Wiley & Sons, Inc. · Zbl 1273.62017
[19] Cressie, N. A. C. (2015). Statistics for Spatial Data, Revised ed. Wiley Classics Library. New York: John Wiley & Sons, Inc. Paperback edition of the 1993 edition. · Zbl 1347.62005
[20] Dassi, F., Ettinger, B., Perotto, S. and Sangalli, L. M. (2015). A mesh simplification strategy for a spatial regression analysis over the cortical surface of the brain. Applied Numerical Mathematics 90, 111-131. · Zbl 1326.62147 · doi:10.1016/j.apnum.2014.10.007
[21] Delicado, P., Giraldo, R., Comas, C. and Mateu, J. (2010). Statistics for spatial functional data: Some recent contributions. EnvironMetrics 21, 224-239.
[22] Diggle, P. J. and Ribeiro, P. J. Jr. (2007). Model-Based Geostatistics. Springer Series in Statistics. New York: Springer. · Zbl 1132.86002
[23] Duchamp, T. and Stuetzle, W. (2003). Spline smoothing on surfaces. Journal of Computational and Graphical Statistics 12, 354-381.
[24] Duchon, J. (1977). Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In Constructive Theory of Functions of Several Variables (W. Schempp and K. Zeller, eds.) 85-100. Berlin, Heidelberg: Springer. · Zbl 0342.41012
[25] Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with \(B\)-splines and penalties. Statistical Science 11, 89-121. · Zbl 0955.62562 · doi:10.1214/ss/1038425655
[26] Ettinger, B., Perotto, S. and Sangalli, L. M. (2016). Spatial regression models over two-dimensional manifolds. Biometrika 103, 71-88. · Zbl 1452.62997 · doi:10.1093/biomet/asv069
[27] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer Series in Statistics. New York: Springer. · Zbl 1119.62046
[28] Finley, A. O., Banerjee, S. and Gelfand, A. E. (2015). spBayes for large univariate and multivariate point-referenced spatio-temporal data models. Journal of Statistical Software 63, 1-28.
[29] Galeano, P. and Peña, D. (2019). Data science, big data and statistics. TEST 28, 289-329. · Zbl 1428.62021 · doi:10.1007/s11749-019-00651-9
[30] Genton, M. G., Johnson, C., Potter, K., Stenchikov, G. and Sun, Y. (2014). Surface boxplots. Stat 3, 1-11. · Zbl 07847421
[31] Genton, M. G. and Kleiber, W. (2015). Cross-covariance functions for multivariate geostatistics. Statistical Science 30, 147-163. · Zbl 1332.86010 · doi:10.1214/14-STS487
[32] Giraldo, R., Dabo-Niang, S. and Martínez, S. (2018). Statistical modeling of spatial big data: An approach from a functional data analysis perspective. Statistics & Probability Letters 136, 126-129. · Zbl 1489.62413 · doi:10.1016/j.spl.2018.02.025
[33] Giraldo, R., Delicado, P. and Mateu, J. (2010). Continuous time-varying kriging for spatial prediction of functional data: An environmental application. Journal of Agricultural, Biological, and Environmental Statistics 15, 66-82. · Zbl 1306.62279 · doi:10.1007/s13253-009-0012-z
[34] Giraldo, R., Delicado, P. and Mateu, J. (2011). Ordinary kriging for function-valued spatial data. Environmental and Ecological Statistics 18, 411-426.
[35] Giraldo, R., Delicado, P. and Mateu, J. (2012). Hierarchical clustering of spatially correlated functional data. Statistica Neerlandica 66, 403-421.
[36] Giraldo, R., Delicado, P. and Mateu, J. (2015). geofd: Spatial prediction for function value data. R package version 1.0. · Zbl 1283.62005
[37] Gneiting, T. (2013). Strictly and non-strictly positive definite functions on spheres. Bernoulli 19, 1327-1349. · Zbl 1283.62200 · doi:10.3150/12-BEJSP06
[38] Goulard, M. and Voltz, M. (1993) Geostatistical Interpolation of Curves: A Case Study in Soil Science, 805-816. Dordrecht: Springer.
[39] Greco, F., Ventrucci, M. and Castelli, E. (2018). P-spline smoothing for spatial data collected worldwide. Spatial Statistics 27, 1-17.
[40] Gromenko, O., Kokoszka, P., Zhu, L. and Sojka, J. (2012). Estimation and testing for spatially indexed curves with application to ionospheric and magnetic field trends. Annals of Applied Statistics 6, 669-696. · Zbl 1243.62122 · doi:10.1214/11-AOAS524
[41] Grujic, O. and Menafoglio, A. (2017). fdagstat, an R package. R package version 1.0.
[42] Grujic, O., Menafoglio, A., Yang, G. and Caers, J. (2018). Cokriging for multivariate Hilbert space valued random fields: Application to multi-fidelity computer code emulation. Stochastic Environmental Research and Risk Assessment 32, 1955-1971.
[43] Haining, R. (2003). Spatial Data Analysis: Theory and Practice. Cambridge: Cambridge University Press.
[44] Hall, P., Fisher, N. I. and Hoffmann, B. (1994). On the nonparametric estimation of covariance functions. The Annals of Statistics 22, 2115-2134. · Zbl 0828.62036 · doi:10.1214/aos/1176325774
[45] Hall, P. and Patil, P. (1994). Properties of nonparametric estimators of autocovariance for stationary random fields. Probability Theory and Related Fields 99, 399-424. · Zbl 0799.62102 · doi:10.1007/BF01199899
[46] Hörmann, S. and Kokoszka, P. (2010). Weakly dependent functional data. The Annals of Statistics 38, 1845-1884. · Zbl 1189.62141 · doi:10.1214/09-AOS768
[47] Hörmann, S. and Kokoszka, P. (2012). Chapter 7—functional time series. In Time Series Analysis: Methods and Applications (T. S. Rao, S. S. Rao and C. Rao, eds.), Handbook of Statistics 30, 157-186. Amsterdam: Elsevier. · Zbl 1242.62005
[48] Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer Series in Statistics. New York: Springer. · Zbl 1279.62017
[49] Horváth, L., Kokoszka, P. and Reeder, R. (2013). Estimation of the mean of functional time series and a two-sample problem. Journal of the Royal Statistical Society, Series B, Statistical Methodology 75, 103-122. · Zbl 07555440
[50] Horváth, L., Kokoszka, P. and Rice, G. (2014). Testing stationarity of functional time series. Journal of Econometrics 179, 66-82. · Zbl 1293.62186 · doi:10.1016/j.jeconom.2013.11.002
[51] Hyndman, R. J. and Ullah, M. S. (2007). Robust forecasting of mortality and fertility rates: A functional data approach. Computational Statistics & Data Analysis 51, 4942-4956. · Zbl 1162.62434 · doi:10.1016/j.csda.2006.07.028
[52] Ignaccolo, R., Mateu, J. and Giraldo, R. (2014). Kriging with external drift for functional data for air quality monitoring. Stochastic Environmental Research and Risk Assessment 28, 1171-1186.
[53] Jiang, H. and Serban, N. (2012). Clustering random curves under spatial interdependence with application to service accessibility. Technometrics 54, 108-119.
[54] Kokoszka, P. and Reimherr, M. (2013). Determining the order of the functional autoregressive model. Journal of Time Series Analysis 34, 116-129. · Zbl 1274.62600 · doi:10.1111/j.1467-9892.2012.00816.x
[55] Kokoszka, P. and Reimherr, M. (2017). Introduction to Functional Data Analysis. Texts in Statistical Science Series. Boca Raton, FL: CRC Press. · Zbl 1411.62004
[56] Lai, M.-J. and Schumaker, L. L. (2007). Spline Functions on Triangulations. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press. · Zbl 1185.41001
[57] Lee, D.-J., Zhu, Z. and Toscas, P. (2015). Spatio-temporal functional data analysis for wireless sensor networks data. EnvironMetrics 26, 354-362. · Zbl 1525.62163
[58] Lila, E., Aston, J. A. D. and Sangalli, L. M. (2016). Smooth principal component analysis over two-dimensional manifolds with an application to neuroimaging. Annals of Applied Statistics 10, 1854-1879. · Zbl 1454.62187 · doi:10.1214/16-AOAS975
[59] Lila, E., Sangalli, L. M., Ramsay, J. and Formaggia, L. (2019). fdaPDE: Functional data analysis and partial differential equations; statistical analysis of functional and spatial data, based on regression with partial differential regularizations. R package version 0.1-6.
[60] Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society, Series B, Statistical Methodology 73, 423-498. · Zbl 1274.62360 · doi:10.1111/j.1467-9868.2011.00777.x
[61] Liu, C., Ray, S. and Hooker, G. (2017). Functional principal component analysis of spatially correlated data. Statistics and Computing 27, 1639-1654. · Zbl 1384.62186 · doi:10.1007/s11222-016-9708-4
[62] Martínez-Hernández, I. and Genton, M. G. (2020). Nonparametric trend estimation in functional time series with application to annual mortality rates. Available at arXiv:2001.04660.
[63] Martínez-Hernández, I., Genton, M. G. and González-Farías, G. (2019). Robust depth-based estimation of the functional autoregressive model. Computational Statistics & Data Analysis 131, 66-79. · Zbl 1471.62133
[64] Mateu, J. and Romano, E. (2017). Advances in spatial functional statistics. Stochastic Environmental Research and Risk Assessment 31, 1-6.
[65] Menafoglio, A., Gaetani, G. and Secchi, P. (2018). Random domain decompositions for object-oriented kriging over complex domains. Stochastic Environmental Research and Risk Assessment 32, 3421-3437.
[66] Menafoglio, A., Grujic, O. and Caers, J. (2016). Universal kriging of functional data: Trace-variography vs cross-variography? Application to gas forecasting in unconventional shales. Spatial Statistics 15, 39-55.
[67] Menafoglio, A. and Secchi, P. (2017). Statistical analysis of complex and spatially dependent data: A review of object oriented spatial statistics. European Journal of Operational Research 258, 401-410. · Zbl 1395.62299 · doi:10.1016/j.ejor.2016.09.061
[68] Menafoglio, A., Secchi, P. and Dalla Rosa, M. (2013). A universal kriging predictor for spatially dependent functional data of a Hilbert space. Electronic Journal of Statistics 7, 2209-2240. · Zbl 1293.62120 · doi:10.1214/13-EJS843
[69] Morris, J. S., Baladandayuthapani, V., Herrick, R. C., Sanna, P. and Gutstein, H. (2011). Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data. Annals of Applied Statistics 5, 894-923. · Zbl 1454.62367 · doi:10.1214/10-AOAS407
[70] Nerini, D., Monestiez, P. and Manté, C. (2010). Cokriging for spatial functional data. Journal of Multivariate Analysis 101, 409-418. · Zbl 1180.91215 · doi:10.1016/j.jmva.2009.03.005
[71] Nychka, D., Furrer, R., Paige, J. and Sain, S. (2017). fields: Tools for spatial data. R package version 9.9.
[72] Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computers & Geosciences 30, 683-691.
[73] Qingguo, T. and Longsheng, C. (2010). B-spline estimation for spatial data. Journal of Nonparametric Statistics 22, 197-217. · Zbl 1182.62066 · doi:10.1080/10485250903272569
[74] R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
[75] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. Springer Series in Statistics. New York: Springer. · Zbl 1079.62006
[76] Ramsay, J. O., Wickham, H., Graves, S. and Hooker, G. (2018). fda: Functional data analysis. R package version 2.4.8.
[77] Ramsay, T. (2002). Spline smoothing over difficult regions. Journal of the Royal Statistical Society, Series B 64, 307-319. · Zbl 1067.62037 · doi:10.1111/1467-9868.00339
[78] Rekabdarkolaee, H. M., Krut, C., Fuentes, M. and Reich, B. J. (2019). A Bayesian multivariate functional model with spatially varying coefficient approach for modeling hurricane track data. Spatial Statistics 29, 351-365.
[79] Reyes, A., Giraldo, R. and Mateu, J. (2015). Residual kriging for functional spatial prediction of salinity curves. Communications in Statistics Theory and Methods 44, 798-809. · Zbl 1325.86016 · doi:10.1080/03610926.2012.753087
[80] Ribeiro, P. J. Jr. and Diggle, P. J. (2018). geoR: Analysis of geostatistical data. R package version 1.7-5.2.1.
[81] Romano, E., Balzanella, A. and Verde, R. (2017). Spatial variability clustering for spatially dependent functional data. Statistics and Computing 27, 645-658. · Zbl 1505.62344 · doi:10.1007/s11222-016-9645-2
[82] Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society, Series B 71, 319-392. · Zbl 1248.62156 · doi:10.1111/j.1467-9868.2008.00700.x
[83] Ruiz-Medina, M. (2011). Spatial autoregressive and moving average Hilbertian processes. Journal of Multivariate Analysis 102, 292-305. · Zbl 1327.62266 · doi:10.1016/j.jmva.2010.09.005
[84] Ruiz-Medina, M. (2012). New challenges in spatial and spatiotemporal functional statistics for high-dimensional data. Spatial Statistics 1, 82-91.
[85] Ruiz-Medina, M. D., Salmerón, R. and Angulo, J. M. (2007). Kalman filtering from POP-based diagonalization of ARH(1). Computational Statistics & Data Analysis 51, 4994-5008. · Zbl 1162.62411 · doi:10.1016/j.csda.2006.07.013
[86] Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics 12. Cambridge: Cambridge University Press. · Zbl 1038.62042
[87] Sangalli, L. M. (2020). A novel approach to the analysis of spatial and functional data over complex domains. Quality Engineering 32, 181-190.
[88] Sangalli, L. M., Ramsay, J. O. and Ramsay, T. O. (2013). Spatial spline regression models. Journal of the Royal Statistical Society, Series B 75, 681-703. · Zbl 1411.62134 · doi:10.1111/rssb.12009
[89] Sartori, I. and Torriani, L. (2019). Manifoldgstat, an R package. R package.
[90] Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis. Texts in Statistical Science Series. London: Chapman & Hall/CRC. · Zbl 1068.62096
[91] Schlather, M., Malinowski, A., Oesting, M., Boecker, D., Strokorb, K., Engelke, S., Martini, J., Ballani, F., Moreva, O., Auel, J., Menck, P. J., Gross, S., Ober, U., Ribeiro, P., Ripley, B. D., Singleton, R. and Pfaff, B. (R Core Team) (2019). RandomFields: Simulation and analysis of random fields. R package version 3.3.6.
[92] Scott-Hayward, L. A. S., Mackenzie, M. L., Donovan, C. R., Walker, C. G. and Ashe, E. (2014). Complex region spatial smoother (CReSS). Journal of Computational and Graphical Statistics 23, 340-360.
[93] Song, J. J. and Mallick, B. (2019). Hierarchical Bayesian models for predicting spatially correlated curves. Statistics 53, 196-209. · Zbl 1415.62071 · doi:10.1080/02331888.2018.1547905
[94] Staicu, A.-M., Crainiceanu, C. M. and Carroll, R. J. (2010). Fast methods for spatially correlated multilevel functional data. Biostatistics 11, 177-194. · Zbl 1437.62610
[95] Stein, M. L. (1999). Interpolation of Spatial Data. Some Theory for Kriging. Springer Series in Statistics. New York: Springer. · Zbl 0924.62100
[96] Sun, Y. and Genton, M. G. (2011). Functional boxplots. Journal of Computational and Graphical Statistics 20, 316-334.
[97] Sun, Y. and Genton, M. G. (2012). Adjusted functional boxplots for spatio-temporal data visualization and outlier detection. EnvironMetrics 23, 54-64.
[98] Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. New York: Springer. ISBN 0-387-95457-0. · Zbl 1006.62003
[99] Wahba, G. (1981). Spline interpolation and smoothing on the sphere. SIAM Journal on Scientific and Statistical Computing 2, 5-16. · Zbl 0537.65008 · doi:10.1137/0902002
[100] Wang, H. and Ranalli, M. G. (2007). Low-rank smoothing splines on complicated domains. Biometrics 63, 209-217. · Zbl 1122.62098 · doi:10.1111/j.1541-0420.2006.00674.x
[101] Wilhelm, M., Dedè, L., Sangalli, L. M. and Wilhelm, P. (2016). IGS: An IsoGeometric approach for smoothing on surfaces. Computer Methods in Applied Mechanics and Engineering 302, 70-89. Cressie, N. A. C. (2015). Statistics for Spatial Data, Revised ed. Wiley Classics Library. New York: John Wiley & Sons, Inc. Paperback edition of the 1993 edition. · Zbl 1425.65185 · doi:10.1016/j.cma.2015.12.028
[102] Wood, S. (2017). Generalized Additive Models: An Introduction with R, 2nd ed. London: Chapman & Hall. · Zbl 1368.62004
[103] Wood, S. N. (2006). Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics 62, 1025-1036. · Zbl 1116.62076 · doi:10.1111/j.1541-0420.2006.00574.x
[104] Wood, S. N., Bravington, M. V. and Hedley, S. L. (2008). Soap film smoothing. Journal of the Royal Statistical Society, Series B 70, 931-955. · Zbl 1411.65021 · doi:10.1111/j.1467-9868.2008.00665.x
[105] Xiao, L., Li, Y. and Ruppert, D. (2013). Fast bivariate \(P\)-splines: The sandwich smoother. Journal of the Royal Statistical Society, Series B 75, 577-599. · Zbl 1411.62109 · doi:10.1111/rssb.12007
[106] Yip, C. M. A. (2018). Statistical characteristics and mapping of near-surface and elevated wind resources in the Middle East. Ph.D. Thesis, King Abdullah University of Science and Technology.
[107] Yue, Y. and Speckman, P. L. (2010). Nonstationary spatial Gaussian Markov random fields. Journal of Computational and Graphical Statistics 19, 96-116.
[108] Zhang, J., Clayton, M. K. and Townsend, P. A. (2011). Functional concurrent linear regression model for spatial images. Journal of Agricultural, Biological, and Environmental Statistics 16, 105-130. · Zbl 1306.62373 · doi:10.1007/s13253-010-0047-1
[109] Zhang, L., Baladandayuthapani, V., Zhu, H., Baggerly, K. A., Majewski, T., Czerniak, B. A. and Morris, J. S. (2016). Functional CAR models for large spatially correlated functional datasets. Journal of the American Statistical Association 111, 772-786.
[110] Zhou, L.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.