×

Estimation and testing for spatially indexed curves with application to ionospheric and magnetic field trends. (English) Zbl 1243.62122

Summary: We develop methodology for the estimation of the functional mean and functional principal components when the functions form a spatial process. The data consist of curves \(X(\mathbf{s}_{k};t),\;t\in[0,T]\), observed at spatial locations \(\mathbf{s}_{1},\mathbf{s}_{2},\ldots,\mathbf{s}_{N}\). We propose several methods, and evaluate them by means of a simulation study. Next, we develop a significance test for the correlation of two such functional spatial fields. After validating the finite sample performance of this test by means of a simulation study, we apply it to determine if there is correlation between long-term trends in the so-called critical ionospheric frequency and decadal changes in the direction of the internal magnetic field of the Earth. The test provides conclusive evidence for correlation, thus solving a long-standing space physics conjecture. This conclusion is not apparent if the spatial dependence of the curves is neglected.

MSC:

62M30 Inference from spatial processes
62H20 Measures of association (correlation, canonical correlation, etc.)
85A35 Statistical astronomy
62P35 Applications of statistics to physics
65C60 Computational problems in statistics (MSC2010)

Software:

wmtsa

References:

[1] Bel, L., Bar-Hen, A., Petit, R. and Cheddadi, R. (2011). Spatio-temporal functional regression on paleoecological data. J. Appl. Stat. 38 695-704. · doi:10.1080/02664760903563650
[2] Cnossen, I. and Richmond, A. D. (2008). Modelling the effects of changes in the Earth’s magnetic field from 1957 to 1997 on the ionospheric hmF2 and foF2 parameters. Journal of Atmospheric and Solar-Terrestrial Physics 70 1512-1524.
[3] Delicado, P., Giraldo, R., Comas, C. and Mateu, J. (2010). Statistics for spatial functional data: Some recent contributions. Environmetrics 21 224-239. · doi:10.1002/env.1003
[4] Finkenstädt, B., Held, L. and Isham, V., eds. (2007). Statistical Methods for Spatio-Temporal Systems. Monographs on Statistics and Applied Probability 107 . Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1099.62500
[5] Gelfand, A. E., Diggle, P. J., Fuentes, M. and Guttorp, P., eds. (2010). Handbook of Spatial Statistics . CRC Press, Boca Raton, FL. · Zbl 1188.62284 · doi:10.1201/9781420072884
[6] Giraldo, R., Delicado, P. and Mateu, J. (2011a). Ordinary kriging for function-valued spatial data. Environ. Ecol. Stat. 18 411-426. · doi:10.1007/s10651-010-0143-y
[7] Giraldo, R., Delicado, P. and Mateu, J. (2011b). A generalization of cokriging and multivariable spatial prediction for functional data. Technical report, Univ. Politécnica de Catalunya, Barcelona.
[8] Gneiting, T. (2011). Making and evaluating point forecasts. J. Amer. Statist. Assoc. 106 746-762. · Zbl 1232.62028 · doi:10.1198/jasa.2011.r10138
[9] Hörmann, S. and Kokoszka, P. (2012). Consistency of the mean and the principal components of spatially distributed functional data. Bernoulli . · Zbl 1457.62193 · doi:10.1007/978-3-7908-2736-1_26
[10] Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications . Springer, Berlin. · Zbl 1279.62017
[11] Kivelson, M. G. and Russell, C. T., eds. (1997). Introduction to Space Physics . Cambridge Univ. Press, Cambridge.
[12] Kokoszka, P., Maslova, I., Sojka, J. and Zhu, L. (2008). Testing for lack of dependence in the functional linear model. Canad. J. Statist. 36 207-222. · Zbl 1144.62316 · doi:10.1002/cjs.5550360203
[13] Laštovička, J. (2009). Global pattern of trends in the upper atmosphere and ionosphere: Recent progress. Journal of Atmospheric and Solar-Terrestrial. Physics 71 1514-1528.
[14] Laštovička, J., Akmaev, R. A., Beig, G., Bremer, J., Emmert, J. T., Jacobi, C., Jarvis, J. M., Nedoluha, G., Portnyagin, Y. I. and Ulich, T. (2008). Emerging pattern of global change in the upper atmosphere and ionosphere. Annales Geophysicae 26 1255-1268.
[15] Maslova, I., Kokoszka, P., Sojka, J. and Zhu, L. (2009). Removal of nonconstant daily variation by means of wavelet and functional data analysis. Journal of Geophysical Research 114 A03202.
[16] Maslova, I., Kokoszka, P., Sojka, J. and Zhu, L. (2010a). Estimation of Sq variation by means of multiresolution and principal component analyses. Journal of Atmospheric and Solar-Terrestial Physics 72 625-632.
[17] Maslova, I., Kokoszka, P., Sojka, J. and Zhu, L. (2010b). Statistical significance testing for the association of magnetometer records at high-, mid- and low latitudes during substorm days. Planetary and Space Science 58 437-445.
[18] Mikhailov, A. V. and Marin, D. (2001). An interpretation of the foF2 and hmF2 long-term trends in the framework of the geomagnetic control concept. Annales Geophysicae 19 733-748.
[19] Nerini, D., Monestiez, P. and Manté, C. (2010). Cokriging for spatial functional data. J. Multivariate Anal. 101 409-418. · Zbl 1180.91215 · doi:10.1016/j.jmva.2009.03.005
[20] Percival, D. B. and Walden, A. T. (2000). Wavelet Methods for Time Series Analysis. Cambridge Series in Statistical and Probabilistic Mathematics 4 . Cambridge Univ. Press, Cambridge. · Zbl 0963.62079
[21] Qian, L., Burns, A. G., Solomon, S. C. and Roble, R. G. (2009). The effect of carbon dioxide cooling on trends in the F2-layer ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics 71 1592-1601.
[22] Ramsay, J., Hooker, G. and Graves, S. (2009). Functional Data Analysis with R and MATLAB . Springer, New York. · Zbl 1179.62006 · doi:10.1007/978-0-387-98185-7
[23] Rishbeth, H. (1990). A greenhouse effect in the ionosphere? Planetary and Space Science 38 945-948.
[24] Roble, R. G. and Dickinson, R. E. (1989). How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophysical Research Letters 16 1441-1444.
[25] Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis . Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1068.62096
[26] Székely, G. J., Rizzo, M. L. and Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. Ann. Statist. 35 2769-2794. · Zbl 1129.62059 · doi:10.1214/009053607000000505
[27] Székely, G. J. and Rizzo, M. L. (2009). Brownian distance covariance. Ann. Appl. Stat. 3 1236-1265. · Zbl 1196.62077 · doi:10.1214/09-AOAS312
[28] Ulich, T., Clilverd, M. A. and Rishbeth, H. (2003). Determining long-term change in the ionosphere. Eos , Transactions American Geophysical Union 84 581-585.
[29] Wackernagel, H. (2003). Multivariate Geostatistics , 3rd ed. Springer, New York. · Zbl 1015.62128
[30] Yamanishi, Y. and Tanaka, Y. (2003). Geographically weighted functional multiple regression analysis: A numerical investigation. J. Japanese Soc. Comput. Statist. 15 307-317. · Zbl 1330.62222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.