×

Blow up and near soliton dynamics for the \(L^2\) critical gKdV equation. (English) Zbl 1319.35224

Summary: These notes present the main results of [the authors, Acta Math. 212, No. 1, 59–140 (2014; Zbl 1301.35137)] concerning the mass critical (gKdV) equation \(u_t+(u_{xx}+u^5)_x=0\) for initial data in \(H^1\) close to the soliton. These works revisit the blow up phenomenon close to the family of solitons in several directions: definition of the stable blow up and classification of all possible behaviors in a suitable functional setting, description of the minimal mass blow up in \(H^1\), construction of various exotic blow up rates in \(H^1\), including grow up in infinite time.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B44 Blow-up in context of PDEs
35Q51 Soliton equations
35C08 Soliton solutions

Keywords:

blow up

Citations:

Zbl 1301.35137

References:

[1] Berestycki, H.; Cazenave, T., Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. (French. English summary) [Instability of stationary states in nonlinear Schrödinger and Klein-Gordon equations] C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 9, 489-492. · Zbl 0492.35010
[2] J. Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 197-215 (1998). · Zbl 1043.35137
[3] Donninger, R.; Krieger, J., Nonscattering solutions and blowup at infinity for the critical wave equation, preprint, arXiv:1201.3258 · Zbl 1280.35135
[4] T. Duyckaerts, F. Merle, Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP 2007, Art. ID rpn002, 67 pp. (2008). · Zbl 1159.35043
[5] T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal. 18 (2009), 1787-1840. · Zbl 1232.35150
[6] G. Fibich, F. Merle and P. Raphaël, Proof of a spectral property related to the singularity formation for the L2 critical nonlinear Schrödinger equation. Phys. D 220 (2006), 1-13. · Zbl 1100.35097
[7] S. Gustafson, K. Nakanishi and T.-P. Tsai, Asymptotic stability, concentration and oscillations in harmonic map heat flow, Landau Lifschitz and Schrödinger maps on \(\mathbb{R}^2\), Comm. Math. Phys. 300 (2010), 205-242. · Zbl 1205.35294
[8] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in applied mathematics, 93-128, Adv. Math. Suppl. Stud., 8, Academic Press, New York, 1983. · Zbl 0549.34001
[9] C.E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case. Invent. Math. 166 (2006) 645-675. · Zbl 1115.35125
[10] C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, (1993) 527-620. · Zbl 0808.35128
[11] C.E. Kenig, G. Ponce and L. Vega, On the concentration of blow up solutions for the generalized KdV equation critical in \(L^2\). Nonlinear wave equations (Providence, RI, 1998), 131-156, Contemp. Math., 263, Amer. Math. Soc., Providence, RI, 2000. · Zbl 0970.35125
[12] R. Killip, S. Kwon, S. Shao, M. Visan, On the mass-critical generalized KdV equation. Discrete Contin. Dyn. Syst. 32 (2012), 191-221. · Zbl 1234.35226
[13] J. Krieger, K. Nakanishi and W. Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation, arXiv:1010.3799. · Zbl 1307.35170
[14] J. Krieger and W. Schlag, Non-generic blow-up solutions for the critical focusing NLS in 1-D, J. Eur. Math. Soc. (JEMS) 11 (2009), 1-125. · Zbl 1163.35035
[15] J. Krieger, W. Schlag and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171 (2008), 543-615. · Zbl 1139.35021
[16] J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the \(H^1(\mathbb{R}^3)\) critical focusing semilinear wave equation, Duke Math. J. 147 (2009), 1-53. · Zbl 1170.35066
[17] Y. Martel and F. Merle, A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl. 79 (2000), 339-425. · Zbl 0963.37058
[18] Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg-de Vries equation. Geom. Funct. Anal. 11 (2001), 74-123. · Zbl 0985.35071
[19] Y. Martel and F. Merle, Stability of blow up profile and lower bounds for blow up rate for the critical generalized KdV equation, Ann. of Math. 155 (2002), 235-280. · Zbl 1005.35081
[20] Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the \(L^2\)-critical generalized KdV equation, J. Amer. Math. Soc. 15 (2002), 617-664. · Zbl 0996.35064
[21] Y. Martel and F. Merle, Frank Nonexistence of blow-up solution with minimal \(L^2\)-mass for the critical gKdV equation. Duke Math. J. 115 (2002), 385-408. · Zbl 1033.35102
[22] Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation I: dynamics near the soliton. Preprint. · Zbl 1319.35224
[23] Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation II: minimal mass solution. Preprint. · Zbl 1326.35320
[24] Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation III: exotic blow up rates. Preprint. · Zbl 1331.35307
[25] F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69 (1993), 427-454. · Zbl 0808.35141
[26] F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation. J. Amer. Math. Soc. 14 (2001), 555-578. · Zbl 0970.35128
[27] F. Merle and P. Raphaël, Sharp upper bound on the blow up rate for the critical nonlinear Schrödinger equation, Geom. Func. Anal. 13 (2003), 591-642. · Zbl 1061.35135
[28] F. Merle and P. Raphaël, On universality of blow-up profile for \(L^2\) critical nonlinear Schrödinger equation. Invent. Math. 156 (2004), 565-672. · Zbl 1067.35110
[29] F. Merle and P. Raphaël, The blow up dynamics and upper bound on the blow up rate for the critical nonlinear Schrödinger equation, Ann. of Math. 161 (2005), 157-222. · Zbl 1185.35263
[30] F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Commun. Math. Phys. 253 (2005), 675-704. · Zbl 1062.35137
[31] F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the \(L^2\) critical nonlinear Schrödinger equation. J. Amer. Math. Soc. 19 (2006), 37-90. · Zbl 1075.35077
[32] F. Merle, P. Raphaël and J. Szeftel, The instability of Bourgain-Wang solutions for the \(L^2\) critical NLS, to appear in Amer. Math. Jour., preprint arXiv:1010.5168. · Zbl 1294.35145
[33] F. Merle, P. Raphaël and I. Rodnianski, Blow up dynamics for smooth data equivariant solutions to the energy critical Schrodinger map problem. preprint arXiv:1102.4308 · Zbl 1213.35139
[34] K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation, J. Differential Equations 250 (2011), 2299-2333. · Zbl 1213.35307
[35] K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, arXiv:1007.4025. · Zbl 1237.35148
[36] P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation. Math. Ann. 331 (2005), 577-609. · Zbl 1082.35143
[37] P. Raphaël, Stability and blow up for the nonlinear Schrodinger equation, Lecture notes for the Clay summer school on evolution equations, ETH, Zurich (2008), http://www.math.univ-toulouse.fr/ raphael/Teaching.html
[38] P. Raphaël and I. Rodnianski, Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills problems. To appear in Publications scientifiques de l’IHES. arXiv:0911.0692 · Zbl 1284.35358
[39] P. Raphaël and R. Schweyer, Stable blow up dynamics for the 1-corotational harmonic heat flow, to appear in Comm. Pure App. Math. · Zbl 1327.35196
[40] P. Raphaël and J. Szeftel, Existence and uniqueness of minimal blow up solutions to an inhomogeneous mass critical NLS. To appear in J. Amer. Math. Soc. 23 (2011). Preprint arXiv:1001.1627 · Zbl 1218.35226
[41] M. J. Landman, G. C. Papanicolaou, C. Sulem and P.-L. Sulem, Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. Phys. Rev. A (3) 38 (1988), 3837-3843.
[42] G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré 2 (2001), 605-673. · Zbl 1007.35087
[43] I. Rodnianski, J. Sterbenz, On the formation of singularities in the critical \(O(3)\sigma \)-model, Ann. of Math. (2) 172 (2010), 187-242. · Zbl 1213.35392
[44] S. Shao, The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality. Anal. PDE 2 (2009), 83-117. · Zbl 1185.35239
[45] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576. · Zbl 0527.35023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.