×

On the controller-stopper problems with controlled jumps. (English) Zbl 1422.91081

Summary: We analyze the continuous time zero-sum and cooperative controller-stopper games of I. Karatzas and W. D. Sudderth [Ann. Probab. 29, No. 3, 1111–1127 (2001; Zbl 1039.60043)], I. Karatzas and I.-M. Zamfirescu [Ann. Probab. 36, No. 4, 1495–1527 (2008; Zbl 1142.93040)] I. Karatzas and I.-M. Zamfirescu [Appl. Math. Optim. 53, No. 2, 163–184 (2006; Zbl 1136.93047)] when the volatility of the state process is controlled as in [E. Bayraktar and Y.-J. Huang, SIAM J. Control Optim. 51, No. 2, 1263–1297 (2013; Zbl 1268.49045)] but additionally when the state process has controlled jumps. We perform this analysis by first resolving the stochastic target problems of H. M. Soner and N. Touzi [SIAM J. Control Optim. 41, No. 2, 404–424 (2002; Zbl 1011.49019); J. Eur. Math. Soc. (JEMS) 4, No. 3, 201–236 (2002; Zbl 1003.49003)] with a cooperative or a noncooperative stopper and then embedding the original problem into the latter set-up. Unlike in [E. Bayraktar and Y.-J. Huang, SIAM J. Control Optim. 51, No. 2, 1263–1297 (2013; Zbl 1268.49045)] our analysis relies crucially on the stochastic Perron method of E. Bayraktar and M. Sîrbu [SIAM J. Control Optim. 51, No. 6, 4274–4294 (2013; Zbl 1285.49019)] but not the dynamic programming principle, which is difficult to prove directly for games.

MSC:

91A15 Stochastic games, stochastic differential games
91A55 Games of timing
91A12 Cooperative games
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
60G40 Stopping times; optimal stopping problems; gambling theory

References:

[1] Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 567-585 (2008) · Zbl 1155.45004
[2] Bayraktar, E., Huang, Y.-J.: On the multidimensional controller-and-stopper games. SIAM J. Control Optim. 51(2), 1263-1297 (2013) · Zbl 1268.49045
[3] Bayraktar, E., Li, J.: Stochastic perron for stochastic target problems. J. Optim. Theory Appl. 170(3), 1026-1054 (2016) · Zbl 1346.93394
[4] Bayraktar, E., Li, J.: Stochastic Perron for stochastic target games. Ann. Appl. Probab. 26(2), 1082-1110 (2016) · Zbl 1337.93100
[5] Bayraktar, E., Sîrbu, M.: Stochastic Perron’s method and verification without smoothness using viscosity comparison: the linear case. Proc. Am. Math. Soc. 140(10), 3645-3654 (2012) · Zbl 1279.60056
[6] Bayraktar, E., Sîrbu, M.: Stochastic Perron’s method for Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 51(6), 4274-4294 (2013) · Zbl 1285.49019
[7] Bayraktar, E., Sîrbu, M.: Stochastic Perron’s method and verification without smoothness using viscosity comparison: obstacle problems and Dynkin games. Proc. Am. Math. Soc. 142(4), 1399-1412 (2014) · Zbl 1321.60080
[8] Bayraktar, E., Yao, S.: Optimal stopping for non-linear expectations-Part II. Stoch. Process. Appl. 121(2), 212-264 (2011) · Zbl 1221.60060
[9] Bayraktar, E., Yao, S.: On the robust optimal stopping problem. SIAM J. Control Optim. 52(5), 3135-3175 (2014) · Zbl 1310.60040
[10] Bayraktar, E., Yao, S.: On the robust Dynkin game. Ann. Appl. Probab. 27(3), 1702-1755 (2017) · Zbl 1371.60071
[11] Bayraktar, E., Zhang, Y.: Stochastic Perron’s method for the probability of lifetime ruin problem under transaction costs. SIAM J. Control Optim. 53(1), 91-113 (2015) · Zbl 1343.93094
[12] Bayraktar, E., Karatzas, I., Yao, S.: Optimal stopping for dynamic convex risk measures. Illinois J. Math. 54(3), 1025-1067 (2010) · Zbl 1259.60042
[13] Bayraktar, E., Cosso, A., Pham, H.: Robust feedback switching control: dynamic programming and viscosity solutions. SIAM J. Control Optim. 54(5), 2594-2628 (2016) · Zbl 1347.49042
[14] Belak, C., Christensen, S., Seifried, F.T.: A general verification result for stochastic impulse control problems. SIAM J. Control Optim. 55(2), 627-649 (2017) · Zbl 1358.93186
[15] Belomestny, D., Krätschmer, V.: Optimal stopping under model uncertainty: randomized stopping times approach. Ann. Appl. Probab. 26(2), 1260-1295 (2016) · Zbl 1339.60043
[16] Bensoussan, A., Lions, J.-L.: Applications of Variational Inequalities in Stochastic Control. Studies in Mathematics and its Applications, vol. 12. North-Holland Publishing Co., Amsterdam (1982). Translated from the French · Zbl 0478.49002
[17] Bouchard, B.: Stochastic targets with mixed diffusion processes and viscosity solutions. Stoch. Process. Appl. 101(2), 273-302 (2002) · Zbl 1075.60557
[18] Bouchard, B., Dang, N.M.: Optimal control versus stochastic target problems: an equivalence result. Syst. Control Lett. 61(2), 343-346 (2012) · Zbl 1238.93124
[19] Bouchard, B., Nutz, M.: Stochastic target games and dynamic programming via regularized viscosity solutions. Math. Oper. Res. 41(1), 109-124 (2016) · Zbl 1334.93178
[20] Bouchard, B., Vu, T.N.: The obstacle version of the geometric dynamic programming principle: application to the pricing of American options under constraints. Appl. Math. Optim. 61(2), 235-265 (2010) · Zbl 1185.49029
[21] Bouchard, B., Elie, R., Touzi, N.: Stochastic target problems with controlled loss. SIAM J. Control Optim. 48(5), 3123-3150 (2009/2010) · Zbl 1202.49028
[22] Bouchard, B., Moreau, L., Nutz, M.: Stochastic target games with controlled loss. Ann. Appl. Probab. 24(3), 899-934 (2014) · Zbl 1290.49075
[23] Ceci, C., Bassan, B.: Mixed optimal stopping and stochastic control problems with semicontinuous final reward for diffusion processes. Stoch. Stoch. Rep. 76(4), 323-337 (2004) · Zbl 1056.60034
[24] Cheng, X., Riedel, F.: Optimal stopping under ambiguity in continuous time. Math. Financ. Econ. 7(1), 29-68 (2013) · Zbl 1272.60020
[25] Cohen, S.N., Elliott, R.J.: Stochastic Calculus and Applications, 2nd edn. Probability and its Applications. Springer, Cham (2015) · Zbl 1338.60001
[26] Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1-67 (1992) · Zbl 0755.35015
[27] Dmitry, B.: Stochastic Perron’s method for optimal control problems with state constraints. Electron. Commun. Probab. 19(73), 15 (2014) · Zbl 1310.93085
[28] Ekren, I., Touzi, N., Zhang, J.: Optimal stopping under nonlinear expectation. Stoch. Process. Appl. 124(10), 3277-3311 (2014) · Zbl 1325.60061
[29] El Karoui, N.: Les aspects probabilistes du contrôle stochastique. Ninth Saint Flour Probability Summer School-1979 (Saint Flour. Lecture Notes in Mathematics, vol. 876. Springer, Berlin 1981, 73-238 (1979) · Zbl 0472.60002
[30] Fleming, W.H., Souganidis, P.E.: On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana Univ. Math. J. 38(2), 293-314 (1989) · Zbl 0686.90049
[31] Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics. Springer, Berlin (1991) · Zbl 0734.60060
[32] Karatzas, I., Sudderth, W.D.: The controller-and-stopper game for a linear diffusion. Ann. Probab. 29(3), 1111-1127 (2001) · Zbl 1039.60043
[33] Karatzas, I., Zamfirescu, I.-M.: Martingale approach to stochastic control with discretionary stopping. Appl. Math. Optim. 53(2), 163-184 (2006) · Zbl 1136.93047
[34] Karatzas, I., Zamfirescu, I.-M.: Martingale approach to stochastic differential games of control and stopping. Ann. Probab. 36(4), 1495-1527 (2008) · Zbl 1142.93040
[35] Krätschmer, V., Schoenmakers, J.: Representations for optimal stopping under dynamic monetary utility functionals. SIAM J. Financ. Math. 1(1), 811-832 (2010) · Zbl 1200.91104
[36] Krylov, NV.: Controlled Diffusion Processes. Applications of Mathematics, vol. 14, Springer, New York (1980). Translated from the Russian by A. B. Aries · Zbl 0459.93002
[37] Maitra, A.P., Sudderth, W.D.: Discrete Gambling and Stochastic Games. Applications of Mathematics, vol. 32. Springer, New York (1996) · Zbl 0864.90148
[38] Maitra, A.P., Sudderth, W.D.: The Gambler and the Stopper, Statistics, Probability and Game Theory. IMS Lecture Notes Monograph Series, vol. 30. Institute of Mathematical Statistics, Hayward, CA, pp. 191-208 (1996) · Zbl 0996.60500
[39] Moreau, L.: Stochastic target problems with controlled loss in jump diffusion models. SIAM J. Control Optim. 49(6), 2577-2607 (2011) · Zbl 1237.93180
[40] Nutz, M., Zhang, J.: Optimal stopping under adverse nonlinear expectation and related games. Ann. Appl. Probab. 25(5), 2503-2534 (2015) · Zbl 1322.60047
[41] Pham, H.: Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. J. Math. Syst. Estim. Control 8(1), 27 (1998) · Zbl 0899.60039
[42] Riedel, F.: Optimal stopping with multiple priors. Econometrica 77(3), 857-908 (2009) · Zbl 1181.60064
[43] Rokhlin, D.B.: Verification by stochastic Perron’s method in stochastic exit time control problems. J. Math. Anal. Appl. 419(1), 433-446 (2014) · Zbl 1297.35209
[44] Rokhlin, D.B., Mironenko, G.: Regular finite fuel stochastic control problems with exit time. Math. Methods Oper. Res. 84(1), 105-127 (2016) · Zbl 1347.93271
[45] Sîrbu, M.: Stochastic Perron’s method and elementary strategies for zero-sum differential games. SIAM J. Control Optim. 52(3), 1693-1711 (2014) · Zbl 1409.91029
[46] Soner, H.M., Touzi, N.: Dynamic programming for stochastic target problems and geometric flows. J. Eur. Math. Soc. 4(3), 201-236 (2002) · Zbl 1003.49003
[47] Soner, H.M., Touzi, N.: Stochastic target problems, dynamic programming, and viscosity solutions. SIAM J. Control Optim. 41(2), 404-424 (2002) · Zbl 1011.49019
[48] Touzi, N.: Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE. Fields Institute Monographs, vol. 29. Fields Institute for Research in Mathematical Sciences, Toronto, ON. Springer, New York (2013). With Chapter 13 by Angès Tourin · Zbl 1256.93008
[49] Veraguas, J.B., Tangpi, L.: On the dynamic representation of some time-inconsistent risk measures in a Brownian filtration. ArXiv e-prints (2016) · Zbl 1443.91337
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.