×

Stochastic target games with controlled loss. (English) Zbl 1290.49075

Summary: We study a stochastic game where one player tries to find a strategy such that the state process reaches a target of controlled-loss-type, no matter which action is chosen by the other player. We provide, in a general setup, a relaxed geometric dynamic programming principle for this problem and derive, for the case of a controlled SDE, the corresponding dynamic programming equation in the sense of viscosity solutions. As an example, we consider a problem of partial hedging under Knightian uncertainty.

MSC:

49N70 Differential games and control
49L20 Dynamic programming in optimal control and differential games
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
91A15 Stochastic games, stochastic differential games
91A23 Differential games (aspects of game theory)
93E20 Optimal stochastic control

References:

[1] Barles, G. (1994). Solutions de Viscosité des Équations de Hamilton-Jacobi . Springer, Paris. · Zbl 0819.35002
[2] Bayraktar, E. and Yao, S. (2011). On zero-sum stochastic differential games. Preprint. Available at . 1112.5744v3 · Zbl 1272.49082
[3] Bouchard, B., Elie, R. and Touzi, N. (2010). Stochastic target problems with controlled loss. SIAM J. Control Optim. 48 3123-3150. · Zbl 1202.49028 · doi:10.1137/08073593X
[4] Bouchard, B. and Nutz, M. (2012). Weak dynamic programming for generalized state constraints. SIAM J. Control Optim. 50 3344-3373. · Zbl 1258.93117 · doi:10.1137/110852942
[5] Bouchard, B. and Vu, T. N. (2012). A stochastic target approach for P&L matching problems. Math. Oper. Res. 37 526-558. · Zbl 1297.91150 · doi:10.1287/moor.1120.0549
[6] Buckdahn, R., Hu, Y. and Li, J. (2011). Stochastic representation for solutions of Isaacs’ type integral-partial differential equations. Stochastic Process. Appl. 121 2715-2750. · Zbl 1243.91011 · doi:10.1016/j.spa.2011.07.011
[7] Buckdahn, R. and Li, J. (2008). Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations. SIAM J. Control Optim. 47 444-475. · Zbl 1157.93040 · doi:10.1137/060671954
[8] Dellacherie, C. and Meyer, P.-A. (1982). Probabilities and Potential. B . North-Holland, Amsterdam. · Zbl 0494.60002
[9] El Karoui, N. and Quenez, M.-C. (1995). Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim. 33 29-66. · Zbl 0831.90010 · doi:10.1137/S0363012992232579
[10] Feldman, J. and Smorodinsky, M. (1997). Simple examples of non-generating Girsanov processes. In Séminaire de Probabilités , XXXI. Lecture Notes in Math. 1655 247-251. Springer, Berlin. · Zbl 0883.60038 · doi:10.1007/BFb0119309
[11] Fernholz, D. and Karatzas, I. (2011). Optimal arbitrage under model uncertainty. Ann. Appl. Probab. 21 2191-2225. · Zbl 1239.60057 · doi:10.1214/10-AAP755
[12] Fleming, W. H. and Souganidis, P. E. (1989). On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana Univ. Math. J. 38 293-314. · Zbl 0686.90049 · doi:10.1512/iumj.1989.38.38015
[13] Föllmer, H. and Leukert, P. (1999). Quantile hedging. Finance Stoch. 3 251-273. · Zbl 0977.91019 · doi:10.1007/s007800050062
[14] Kazamaki, N. (1994). Continuous Exponential Martingales and BMO. Lecture Notes in Math. 1579 . Springer, Berlin. · Zbl 0806.60033 · doi:10.1007/BFb0073585
[15] Kucia, A. and Nowak, A. (1987). On \(\epsilon\)-optimal continuous selectors and their application in discounted dynamic programming. J. Optim. Theory Appl. 54 289-302. · Zbl 0595.90067 · doi:10.1007/BF00939436
[16] Li, J. and Peng, S. (2009). Stochastic optimization theory of backward stochastic differential equations with jumps and viscosity solutions of Hamilton-Jacobi-Bellman equations. Nonlinear Anal. 70 1776-1796. · Zbl 1158.60354 · doi:10.1016/j.na.2008.02.080
[17] Mertens, J.-F. (1972). Théorie des processus stochastiques généraux applications aux surmartingales. Z. Wahrsch. Verw. Gebiete 22 45-68. · Zbl 0236.60033 · doi:10.1007/BF00538905
[18] Moreau, L. (2011). Stochastic target problems with controlled loss in jump diffusion models. SIAM J. Control Optim. 49 2577-2607. · Zbl 1237.93180 · doi:10.1137/100802268
[19] Neveu, J. (1975). Discrete-Parameter Martingales . North-Holland, Amsterdam. · Zbl 0345.60026
[20] Nutz, M. and Soner, H. M. (2012). Superhedging and dynamic risk measures under volatility uncertainty. SIAM J. Control Optim. 50 2065-2089. · Zbl 1263.91026 · doi:10.1137/100814925
[21] Peng, S. (1997). BSDE and stochastic optimizations. In Topics in Stochastic Analysis (J. Yan, S. Peng, S. Fang and L. Wu, eds.). Science Press, Beijing.
[22] Peng, S. (2007). \(G\)-expectation, \(G\)-Brownian motion and related stochastic calculus of Itô type. In Stochastic Analysis and Applications. Abel Symp. 2 541-567. Springer, Berlin. · Zbl 1131.60057 · doi:10.1007/978-3-540-70847-6_25
[23] Peng, S. (2008). Multi-dimensional \(G\)-Brownian motion and related stochastic calculus under \(G\)-expectation. Stochastic Process. Appl. 118 2223-2253. · Zbl 1158.60023 · doi:10.1016/j.spa.2007.10.015
[24] Soner, H. M. and Touzi, N. (2002). Dynamic programming for stochastic target problems and geometric flows. J. Eur. Math. Soc. ( JEMS ) 4 201-236. · Zbl 1003.49003 · doi:10.1007/s100970100039
[25] Soner, H. M. and Touzi, N. (2002). Stochastic target problems, dynamic programming, and viscosity solutions. SIAM J. Control Optim. 41 404-424. · Zbl 1011.49019 · doi:10.1137/S0363012900378863
[26] Soner, H. M., Touzi, N. and Zhang, J. (2013). Dual formulation of second order target problems. Ann. Appl. Probab. 23 308-347. · Zbl 1293.60063 · doi:10.1214/12-AAP844
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.