×

The Hawking-Penrose singularity theorem for \(C^{1,1}\)-Lorentzian metrics. (English) Zbl 1416.83068

The classical singularity theorems of general relativity due to Hawking and Penrose hold for \(C^2\)-Lorentzian metrics. The theorems basically state that in general relativity Lorentzian spacetimes (manifolds with a Lorentzian metric), satisfying certain reasonable physical conditions, are geodesically incomplete, i.e., singular. In other words such spacetimes cannot be extended in a \(C^2\)-Lorentzian way.
However, in general relativity, some lower regularity metrics are interesting. In particular, \(C^{1,1}\)-metrics, i.e., metrics that are differentiable, with all derivatives locally Lipshitz, do arise; for example, those that are used to match interior and exterior relativistic spacetimes in physical models. It is natural, therefore to ask whether an extension could be made with a lower regularity metric. Previous investigations [the third author et al., Classical Quantum Gravity 32, No. 15, Article ID 155010, 12 p. (2015; Zbl 1327.83199); Classical Quantum Gravity 32, No. 7, Article ID 075012, 19 p. (2015; Zbl 1328.83123)] show that the Penrose singularity theorem [R. Penrose, Phys. Rev. Lett. 14, 57–59 (1965; Zbl 0125.21206)] and the Hawking singularity theorem [S. W. Hawking, Proc. R. Soc. Lond., Ser. A 300, 187–201 (1967; Zbl 0163.23903)] hold for metrics that are \(C^{1,1}\). This paper states and proves a \(C^{1,1}\)-version of the Hawking-Penrose singularity theorem [S. W. Hawking and R. Penrose, Proc. R. Soc. Lond., Ser. A 314, 529–548 (1970; Zbl 0954.83012)] and its generalization by G. J. Galloway and J. M. M. Senovilla [Classical Quantum Gravity 27, No. 15, Article ID 152002, 10 p. (2010; Zbl 1195.83065)].
The usual assumptions of the Hawking-Penrose singularity theorem are modified with an eye towards a lower regularity proof. Weak versions of the strong energy condition and genericity condition for \(C^{1,1}\)-metrics and for the \(C^0\)-trapped submanifolds are given.
The proof is extensive. It proceeds using regularization showing that under these weak conditions, causal geodesics become non-maximizing. In the process it gives new insight into the matrix Riccati equation for certain approximating metrics.
The overall proof of the singularity theorem for \(C^{1,1}\)-metrics is significantly complicated by the fact that with the lower regularity the curvature tensor is only defined almost everywhere. The standard proof of the singularity theorems relies on the existence of conjugate points (or focal points) along suitable classes of geodesics in the Lorentzian manifold, and these points are shown to exist by studying Jacobi fields (or, equivalently, Riccati equations) along the geodesics. But, with the lower regularity, the Jacobi fields aren’t well defined along all the geodesics. This greatly complicates the necessary analysis of the maximizing properties of causal geodesics, and it necessitates the detailed analysis of the matrix Riccati equation for certain approximating metrics.
In summary, this is a very important addition to understanding the global structure of general relativistic spacetimes. It is of interest to both mathematicians and physicists in gravity and geometric analysis. In addition, there may be independent interest by mathematicians studying the matrix Riccati equation.

MSC:

83C75 Space-time singularities, cosmic censorship, etc.
58Z05 Applications of global analysis to the sciences
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics

References:

[1] Andersson, L., Galloway, G.J., Howard, R.: A strong maximum principle for weak solutions of quasi-linear elliptic equations with applications to Lorentzian and Riemannian geometry. Commun. Pure Appl. Math. 51(6), 1097-0312 (1998) · Zbl 0935.35020
[2] Beem J.K., Ehrlich P., Easley K.: Global Lorentzian Geometry, 2nd edn. Chapmann & Hall, London (1996) · Zbl 0846.53001
[3] Chruściel, P.T.: Elements of causality theory. arXiv:1110.6706 · Zbl 1320.83013
[4] Chruściel, P.T.; Grant, J.D.E., On Lorentzian causality with continuous metrics, Class. Quantum Gravity, 29, 145001, (2012) · Zbl 1246.83025 · doi:10.1088/0264-9381/29/14/145001
[5] Eschenburg, J.-H.; Heintze, E., Comparison theory for Riccati equations, Manuscripta Math., 68, 209-214, (1990) · Zbl 0714.53029 · doi:10.1007/BF02568760
[6] Galloway, G.; Senovilla, J., Singularity theorems based on trapped submanifolds of arbitrary co-dimension, Class. Quantum Gravity, 27, 152002, (2010) · Zbl 1195.83065 · doi:10.1088/0264-9381/27/15/152002
[7] Graf, M., Volume comparison for \(C\)\^{}{1,1} metrics, Ann. Glob. Anal. Geom., 50, 209-235, (2016) · Zbl 1362.53078 · doi:10.1007/s10455-016-9508-2
[8] Garcí a-Parrado, A.; Senovilla, J.M.M., Causal structures and causal boundaries, Class. Quantum Gravity, 22, r1-r84, (2005) · Zbl 1073.83001 · doi:10.1088/0264-9381/22/9/R01
[9] Grant, J.D.E., Areas and volumes for null cones, Ann. Henri Poincaré, 12, 965-985, (2011) · Zbl 1218.83010 · doi:10.1007/s00023-011-0090-7
[10] Hawking, S.W., The occurrence of singularities in cosmology. III. causality and singularities, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 300, 187-201, (1967) · Zbl 0163.23903 · doi:10.1098/rspa.1967.0164
[11] Hawking S.W., Ellis G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973) · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[12] Hawking, S.W.; Penrose, R., The singularities of gravitational collapse and cosmology, Proc. R. Soc. Lond. A, 314, 529-548, (1970) · Zbl 0954.83012 · doi:10.1098/rspa.1970.0021
[13] Kriele M.: Spacetime. Springer, Berlin (2001) · Zbl 0933.83001
[14] Kunzinger, M.; Steinbauer, R.; Stojković, M., The exponential map of a \(C\)\^{}{1,1}-metric, Differ. Geom. Appl., 34, 14-24, (2014) · Zbl 1291.53016 · doi:10.1016/j.difgeo.2014.03.005
[15] Kunzinger, M.; Steinbauer, R.; Stojković, M.; Vickers, J.A., A regularisation approach to causality theory for \(C\)\^{}{1,1}-Lorentzian metrics, Gen. Relativ. Gravit., 46, 1738, (2014) · Zbl 1308.83026 · doi:10.1007/s10714-014-1738-7
[16] Kunzinger, M.; Steinbauer, R.; Stojković, M.; Vickers, J.A., Hawking’s singularity theorem for \(C\)\^{}{1,1}-metrics, Class. Quantum Gravity, 32, 075012, (2015) · Zbl 1328.83123 · doi:10.1088/0264-9381/32/7/075012
[17] Kunzinger, M.; Steinbauer, R.; Vickers, J.A., The Penrose singularity theorem in regularity \(C\)\^{}{1,1}, Class. Quantum Gravity, 32, 155010, (2015) · Zbl 1327.83199 · doi:10.1088/0264-9381/32/15/155010
[18] Lichnerowicz, A.: Théories relativistes de la gravitation et de l’ électromagnétisme. Relativité générale et théories unitaires. Masson, Paris (1955) · Zbl 0786.53014
[19] Mars, M.; Senovilla, J.M.M., Geometry of general hypersurfaces in spacetime: junction conditions, Class. Quantum Gravity, 10, 1865-1897, (1993) · Zbl 0786.53014 · doi:10.1088/0264-9381/10/9/026
[20] Minguzzi, E., Limit curve theorems in Lorentzian geometry, J. Math. Phys., 49, 092501, (2008) · Zbl 1152.81565 · doi:10.1063/1.2973048
[21] Minguzzi, E., Convex neighborhoods for Lipschitz connections and sprays, Monatsh. Math., 177, 569-625, (2015) · Zbl 1330.53021 · doi:10.1007/s00605-014-0699-y
[22] Minguzzi, E., Sanchez, M.: The causal hierarchy of spacetimes, Recent developments in pseudo Riemannian geometry, ESI Lect. Math. Phys., 299-358, p. 0609119 (2008) · Zbl 1148.83002
[23] Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. Recent developments in pseudo-Riemannian geometry, 299-358, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich (2008) · Zbl 1148.83002
[24] O’Neill B.: Semi-Riemannian Geometry. With Applications to Relativity. Pure and Applied Mathematics 103. Academic Press, New York (1983) · Zbl 0531.53051
[25] Oppenheimer, J.R.; Snyder, H., On continued gravitational contraction, Phys. Rev., 56, 455-459, (1939) · Zbl 0022.28104 · doi:10.1103/PhysRev.56.455
[26] Penrose, R.: Structure of space-time, Battelle rencontres. In: DeWitt, C.M., Wheeler, J.A. (eds.) 1967 Lectures in Mathematics and Physics, pp. 121-235. W. A. Benjamin, Inc., Amsterdam (1968) · Zbl 0174.55901
[27] Penrose, R.: The Geometry of Impulsive Gravitational Waves, General Relativity (Papers in Honour of J. L. Synge), pp. 101-115. Clarendon Press, Oxford (1972) · Zbl 0274.53050
[28] Penrose, R.: Techniques of differential topology in relativity, Society for Industrial and Applied Mathematics, Philadelphia, PA., Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, no. 7 (1972) · Zbl 0321.53001
[29] Peters, S., Convergence of Riemannian manifolds, Compos. Math., 62, 3-16, (1987) · Zbl 0618.53036
[30] Penrose, R., Gravitational collapse and space-time singularities, Phys. Rev. Lett., 14, 57-59, (1965) · Zbl 0125.21206 · doi:10.1103/PhysRevLett.14.57
[31] Sämann, C., Global hyperbolicity for spacetimes with continuous metrics, Ann. Henri Poincaré, 17, 1429-1455, (2016) · Zbl 1342.83014 · doi:10.1007/s00023-015-0425-x
[32] Sbierski, J.: The \(C\)\^{}{0}-inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian geometry. Preprint arXiv:1507.00601 [math-ph]. (To appear in Journal of Differential Geometry) · Zbl 1401.53058
[33] Senovilla, J.M.M., Singularity theorems and their consequences, Gen. Relat. Gravit., 30, 701-848, (1998) · Zbl 0924.53045 · doi:10.1023/A:1018801101244
[34] Senovilla, J.M.M.; Garfinkle, D., The 1965 Penrose singularity theorem, Class. Quantum Gravity, 32, 124008, (2015) · Zbl 1320.83013 · doi:10.1088/0264-9381/32/12/124008
[35] Treude, J.-H.; Grant, J.D.E., Volume comparison for hypersurfaces in Lorentzian manifolds and singularity theorems, Ann. Glob. Anal. Geom., 43, 233-251, (2013) · Zbl 1268.53076 · doi:10.1007/s10455-012-9343-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.