×

Volume comparison for \(\mathcal {C}^{1,1}\)-metrics. (English) Zbl 1362.53078

In the reviewed paper the author generalizes certain volume comparison theorems for smooth Riemannian or Lorentzian manifolds to metrics that are only \(C^{1,1}\). For a (semi-)Riemannnian metric the class \(C^{1,1}\) (locally Lipschitz continuous first derivatives) is the lowest differentiability class of the metric where one still has local existence and uniqueness of solutions of the geodesic equation.
First the author studies Riemannian manifolds with \(C^{1,1}\)-metrics with a lower bound on the Ricci curvature and shows a \(C^{1,1}\) version of the Bishop-Gromov volume comparison theorem. In the Lorentzian case, she first gives the definition of the cosmological comparison condition, then shows the existence of suitable approximating metrics and that for \(C^{1,1}\)-metrics the cut locus still has measure zero. Next, the author defines comparison spacetimes as Robertson-Walker spacetimes with constant Ricci curvature and studies their dependence on the curvature quantities \(\kappa\) and \(\beta\). Finally, she proves a volume comparison theorem and shows some applications of this.

MSC:

53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53C20 Global Riemannian geometry, including pinching

References:

[1] Alexander, Stephanie B., Bishop, Richard L.: Lorentz and semi-Riemannian spaces with Alexandrov curvature bounds. Comm. Anal. Geom. 16(2), 251-282 (2008) · Zbl 1149.53040 · doi:10.4310/CAG.2008.v16.n2.a1
[2] Andersson, Lars, Howard, Ralph: Comparison and rigidity theorems in semi-Riemannian geometry. Comm. Anal. Geom. 6(4), 819-877 (1998) · Zbl 0963.53038 · doi:10.4310/CAG.1998.v6.n4.a8
[3] Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry. Dekker, New York (1996) · Zbl 0846.53001
[4] Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43-50 (2005) · Zbl 1081.53059 · doi:10.1007/s00220-005-1346-1
[5] Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions. Springer, Berlin (1977) · Zbl 0346.46038 · doi:10.1007/BFb0087685
[6] Chruściel, P. T.: Elements of causality theory, http://arxiv.org/abs/1110.6706
[7] Chruściel, P.T., Grant, J.D.E.: On Lorentzian causality with continuous metrics. Class. Quantum Gravity 29, 145001 (2012) · Zbl 1246.83025 · doi:10.1088/0264-9381/29/14/145001
[8] Dieudonne, J.: Foundations of modern analysis, vol. 1. Academic Press, New York (1969) · Zbl 0176.00502
[9] Dieudonne, J.: Treatise on analysis, vol. 3. Academic Press, New York (1972) · Zbl 0268.58001
[10] Ehrlich, P.E., Sánchez, M.: Some semi-Riemannian volume comparison theorems. Tohoku Math. J. 52 (2) 3, 331-348 (2000) · Zbl 0983.53044
[11] Kahn, D.W.: Introduction to Global Analysis. Academic Press, New York (1980) · Zbl 0443.58001
[12] Kunzinger, M., Steinbauer, R., Stojković, M.: The exponential map of a \[C^{1,1}\] C1,1-metric. Diff. Geom. Appl. 34, 14-24 (2014) · Zbl 1291.53016 · doi:10.1016/j.difgeo.2014.03.005
[13] Kunzinger, M., Steinbauer, R., Stojković, M., Vickers, J.A.: A regularisation approach to causality theory for \[C^{1,1}\] C1,1-Lorentzian metrics. Gen. Relativ. Gravit. 46, 1738 (2014) · Zbl 1308.83026 · doi:10.1007/s10714-014-1738-7
[14] Kunzinger, M., Steinbauer, R., Stojković, M., Vickers, J.A.: Hawking’s singularity theorem for \[C^{1,1}\] C1,1-metrics. Class. Quantum Gravity 32, 075012 (2015) · Zbl 1328.83123 · doi:10.1088/0264-9381/32/7/075012
[15] Kunzinger, M., Steinbauer, R., Vickers, J.A.: The Penrose singularity theorem in regularity \[C^{1,1}\] C1,1. Class. Quantum Gravity 32, 155010 (2015) · Zbl 1327.83199 · doi:10.1088/0264-9381/32/15/155010
[16] Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903-991 (2009) · Zbl 1178.53038 · doi:10.4007/annals.2009.169.903
[17] Minguzzi, E.: Limit curve theorems in Lorentzian geometry. J. Math. Phys. 49, 092501 (2008) · Zbl 1152.81565 · doi:10.1063/1.2973048
[18] Minguzzi, E.: Convex neighborhoods for Lipschitz connections and sprays. Monatshefte für Mathematik, 1-57 (2014)
[19] Minguzzi, E.; Sánchez, M.; Alekseevsky, DV (ed.); Baum, H. (ed.), The causal hierarchy of spacetimes, 299-358 (2008), Zürich · Zbl 1148.83002 · doi:10.4171/051-1/9
[20] O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York (1983) · Zbl 0531.53051
[21] Sämann, C.: Global Hyperbolicity for Spacetimes with Continuous Metrics. Annales Henri Poincaré (2015). doi:10.1007/s00023-015-0425-x · Zbl 1342.83014 · doi:10.1007/s00023-015-0425-x
[22] Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Rel. Grav. 30(5), 701-848 (1998) · Zbl 0924.53045 · doi:10.1023/A:1018801101244
[23] Srivastava, S.M.: A course on borel sets. Springer, New York (1998) · Zbl 0903.28001 · doi:10.1007/978-3-642-85473-6
[24] Sturm, K.T.: On the geometry of metric measure spaces. II, Acta Mathematica 196, 133-177 (2006) · Zbl 1106.53032
[25] Treude, J.-H., Grant, J.D.E.: Volume comparison for hypersurfaces in Lorentzian manifolds and singularity theorems. Ann. Global Anal. Geom. 43(3), 233-251 (2013) · Zbl 1268.53076 · doi:10.1007/s10455-012-9343-z
[26] Zhu, S.; Grove, K. (ed.); Petersen, P. (ed.), The comparison geometry of Ricci curvature, 221-262 (1997), Berkeley · Zbl 0896.53036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.