×

A fourth-order compact difference scheme for solving 2D EFK equation. (English) Zbl 07878044

Summary: In this article, a fourth order compact difference scheme for solving the two-dimensional extended Fisher-Kolmogorov (2D EFK) equation is proposed and analyzed. This scheme is three-level implicit, based on a novel time discretization idea of \(u (x_i, y_j, t_n) \approx \frac{1}{4} (U_{i, j}^{n + 1} + 2U_{i, j}^n + U_{i, j}^{n - 1})\). The discrete energy functional method is used to obtain prior estimates of numerical solutions in the maximum norm. Furthermore, the convergence of the difference solutions in the maximum norm is analyzed, and the convergence rate is obtained as \(O (\tau^2 + h^4)\), which without any restriction on the grid ratio with time step \(\tau\) and mesh size \(h\). Finally, numerical examples are given to support the theoretical analysis.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Qxx Partial differential equations of mathematical physics and other areas of application
65Nxx Numerical methods for partial differential equations, boundary value problems
Full Text: DOI

References:

[1] Coullet, P.; Elphick, C.; Repaux, D., Nature of spatial chaos, Phys Rev Lett, 58, 5, 5, 1987
[2] Van Saarloos, W., Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection, Phys Rev A, 37, 1, 1, 1988
[3] Dee, G. T.; Van Saarloos, W., Bistable systems with propagating fronts leading to pattern formation, Phys Rev Lett, 60, 25, 25, 1988
[4] Feng, J.; Zhou, Y.; Hou, T., A maximum-principle preserving and unconditionally energy-stable linear second-order finite difference scheme for AllenCCahn equations, Appl Math Lett, 118, Article 107179 pp., 2021 · Zbl 1524.65336
[5] Hornreich, R. M.; Luban, M.; Shtrikman, S., Critical behaviour at the onset of k-space instability at the line, Phys Rev Lett, 35, 1678-1681, 1975
[6] Aronson, D. G.; Weinberger, H. F., Multidimensional nonlinear diffusion arising in population genetics, Adv Math, 30, 1, 1, 1978 · Zbl 0407.92014
[7] Van Saarloos, W., Dynamical velocity selection: Marginal stability, Phys Rev Lett, 58, 24, 24, 1987
[8] Hu, D.; Cai, W.; Fu, Y.; Wang, Y., Fast dissipation-preserving difference scheme for nonlinear generalized wave equations with the integral fractional Laplacian, Commun Nonlinear Sci Numer Simul, 99, Article 105786 pp., 2021 · Zbl 1471.65102
[9] Fu, Y.; Zhao, Y.; Hu, D., The Hamiltonian structure and fast energy-preserving algorithms for the fractional Klein-Gordon equation, Comput Math Appl, 113, 86-102, 2022 · Zbl 1504.65173
[10] Li, H.; Wang, Y.; Qin, M., A sixth order averaged vector field method, J Comput Math, 34, 5, 5, 2016 · Zbl 1374.65206
[11] Danumjaya, P.; Pani, A. K., Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation, J Comput Appl Math, 174, 1, 1, 2005 · Zbl 1067.65107
[12] Danumjaya, P.; Pani, A. K., Numerical methods for the extended Fisher-Kolmogorov (EFK) equation, Int J Numer Anal Model, 3, 2, 186-210, 2006 · Zbl 1111.65085
[13] Doss, L. J.T.; Nandini, A. P., An \(H^1\)-Galerkin mixed finite element method for the extended Fisher-Kolmogorov equation, Int J Numer Anal Model Ser B, 3, 4, 4, 2012 · Zbl 1266.65199
[14] Ilati, M.; Dehghan, M., Direct local boundary integral equation method for numerical solution of extended Fisher-Kolmogorov equation, Eng Comput, 34, 1, 1, 2018
[15] Liu, F.; Zhao, X.; Liu, B., Fourier pseudo-spectral method for the extended Fisher-Kolmogorov equation in two dimensions, Adv Difference Equ, 2017, 1, 1, 2017 · Zbl 1422.65284
[16] Li, X.; Zhang, L., Error estimates of a trigonometric integrator sine pseudo-spectral method for the extended Fisher-Kolmogorov equation, Appl Numer Math, 131, 39-53, 2018 · Zbl 1462.65163
[17] Celik, I., Gegenbauer wavelet collocation method for the extended Fisher-Kolmogorov equation in two dimensions, Math Methods Appl Sci, 43, 8, 8, 2020 · Zbl 1512.65226
[18] Kadri, T.; Omrani, K., A second-order accurate difference scheme for an extended Fisher-Kolmogorov equation, Comput Math Appl, 61, 2, 2, 2011 · Zbl 1211.65113
[19] Khiari, N.; Omrani, K., Finite difference discretization of the extended Fisher-Kolmogorov equation in two dimensions, Comput Math Appl, 62, 11, 11, 2011 · Zbl 1236.65113
[20] He, D., On the \(L^\infty \)-norm convergence of a three-level linearly implicit finite difference method for the extended Fisher-Kolmogorov equation in both 1D and 2D, Comput Math Appl, 71, 12, 12, 2016 · Zbl 1443.65126
[21] Sun, Q.; Ji, B.; Zhang, L., A convex splitting BDF2 method with variable time-steps for the extended Fisher-Kolmogorov equation, Comput Math Appl, 114, 73-82, 2022 · Zbl 1524.65400
[22] Kadri, T.; Omrani, K., A fourth-order accurate finite difference scheme for the extended-Fisher-Kolmogorov equation, Bull Korean Math Soc, 55, 1, 1, 2018 · Zbl 1395.65021
[23] Ismail, K.; Atouani, N.; Omrani, K., A three-level linearized high-order accuracy difference scheme for the extended Fisher-Kolmogorov equation, Eng Comput, 297-310, 2021
[24] Li, J.; Zhu, L., Analysis and application of a spatial fourth-order finite difference scheme for the Ziolkowski’s PML model, J Comput Phys, 464, Article 111350 pp., 2022 · Zbl 1531.78008
[25] Li, J.; Chen, M.; Chen, M., Developing and analyzing fourth-order difference methods for the metamaterial Maxwell’s equations, Adv Comput Math, 45, 213-241, 2019 · Zbl 1428.65011
[26] Li, S.; Kravchenko, O. V.; Qu, K., On the \(L^\infty\) convergence of a novel fourth-order compact and conservative difference scheme for the generalized Rosenau-KdV-RLW equation, Numer Algorithms, 94, 789-816, 2023 · Zbl 1523.65072
[27] Li, S.; Fu, S., A new high-order compact and conservative numerical scheme for the generalized symmetric regularized long wave equations, Int J Comput Math, 100, 5, 5, 2023 · Zbl 1524.65371
[28] Li, J.; Visbal, M. R., High-order compact schemes for nonlinear dispersive waves, J Sci Comput, 26, 1-23, 2006 · Zbl 1089.76043
[29] Wang, T.; Guo, B., Unconditional convergence of two conservative compact difference schemes for non-linear Schrödinger equation in one dimension, Scientia Sinica Math, 41, 3, 3, 2011 · Zbl 1488.65296
[30] Li, S., Numerical study of a conservative weighted compact difference scheme for the symmetric regularized long wave equations, Numer Methods Partial Differential Equations, 35, 1, 1, 2019 · Zbl 1416.76185
[31] Wang, T.; Guo, B.; Xu, Q., Fourth-order compact and energy conservative difference schemes for the nonlinear Schrodinger equation in two dimensions, J Comput Phys, 243, 382-399, 2013 · Zbl 1349.65347
[32] Hao, Z. P.; Sun, Z. Z.; Cao, W. R., A three-level linearized compact difference scheme for the Ginzburg-Landau equation, Numer Methods Partial Differential Equations, 31, 3, 3, 2015 · Zbl 1320.65116
[33] Dimitrienko, Y. I.; Li, S.; Niu, Y., Study on the dynamics of a nonlinear dispersion model in both 1D and 2D based on the fourth-order compact conservative difference scheme, Math Comput Simulation, 182, 661-689, 2021 · Zbl 1524.65332
[34] Li, S., Numerical analysis for fourth-order compact conservative difference scheme to solve the 3D Rosenau-RLW equation, Comput Math Appl, 72, 9, 9, 2016 · Zbl 1368.65141
[35] Zuo, J., New compact finite difference schemes with fourth-order accuracy for the extended Fisher-Kolmogorov equation, Eng Lett, 30, 1, 2022
[36] Li, S.; Xu, D.; Zhang, J.; Sun, C., A new three-level fourth-order compact finite difference scheme for the extended Fisher-Kolmogorov equation, Appl Numer Math, 178, 41-51, 2022 · Zbl 07533816
[37] Boujlida, H.; Ismail, K.; Omrani, K., A three level linearized compact difference scheme for a fourth-order reaction-diffusion equation, Appl Numer Math, 2023
[38] Guo, B.; Pascual, P. J.; Rodriguez, M. J.; Vzquez, L., Numerical solution of the sine-Gordon equation, Appl Math Comput, 18, 1, 1, 1986 · Zbl 0622.65131
[39] Hu, D.; Cai, W.; Song, Y.; Wang, Y., A fourth-order dissipation-preserving algorithm with fast implementation for space fractional nonlinear damped wave equations, Commun Nonlinear Sci Numer Simul, 91, Article 105432 pp., 2020 · Zbl 1448.65105
[40] Zhou, Y., Application of discrete functional analysis to the finite difference methods, 1990, International Academic Publishers: International Academic Publishers Beijing
[41] Guo, B., The differential method of partial differential equations, 1988, IScience Publishers: IScience Publishers Beijing
[42] Wang, X.; Dai, W.; Yan, Y., Numerical analysis of a new conservative scheme for the 2D generalized Rosenau-RLW equation, Appl Anal, 100, 12, 12, 2021 · Zbl 1481.65161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.