×

Numerical study of a conservative weighted compact difference scheme for the symmetric regularized long wave equations. (English) Zbl 1416.76185

Summary: In this article, a new weighted and compact conservative difference scheme for the symmetric regularized long wave (SRLW) equations is considered. The new scheme is decoupled and linearized in practical computation, that is, at each time step only two tridiagonal systems of linear algebraic equations need to be solved. It is proved by the discrete energy method that the compact scheme is uniquely solvable, the convergence and stability of the difference scheme are obtained, and its numerical convergence order is \(O(\tau^2+h^4)\) in the \(L^\infty\)-norm. Numerical experiment results show that the scheme is efficient and reliable.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI

References:

[1] Seyler, C. E., Fenstermacler, D. C., \(A symmetric regularized long wave equation, Phys. Fluids\). vol. 27 ( 1984) pp. 4– 7. · Zbl 0544.76170
[2] Clarkson, P. A., \(New similarity reductions and Painleve analysis for the symmetric regularized long wave and modified Benjamin‐Bona‐Mahoney equations, J. Phys. A Math. General\). vol. 22 ( 1989) pp. 3821– 3848. · Zbl 0711.35113
[3] Dogan, A., \(Numerical solution of RLW equation using linear finite elements within Galerkin's method, Appl. Math. Model\). vol. 26 ( 2002) pp. 771– 783. · Zbl 1016.76046
[4] Zhang, L., \(A finite difference scheme for generalized regularized long‐wave equation, Appl. Math. Comput\). vol. 168 ( 2005) pp. 962– 972. · Zbl 1080.65079
[5] Mokhtari, R., Mohammadi, M., \(Numerical solution of GRLW equation using Sinc‐collocation method, Comput. Phys. Commun\). vol. 181 ( 2010) pp. 1266– 1274. · Zbl 1219.65113
[6] Gao, F., Qiao, F., Rui, H., \(Numerical simulation of the modified regularized long wave equation by split least‐squares mixed finite element method, Math. Comput. Simul\). vol. 109 ( 2015) pp. 64– 73. · Zbl 1540.65373
[7] Li, S., Wang, J., \(Long‐time convergence of numerical approximations for 2D GBBM equation, Comput. Math. Math. Phys\). vol. 56 ( 2016) pp. 426– 436. · Zbl 1348.65122
[8] Dehghan, M., Abbaszadeh, M., Mohebbi, A., \(NThe numerical solution of nonlinear high dimensional generalized Benjamin‐Bona‐Mahony‐Burgers equation via the meshless method of radial basis functions, Comput. Math. Appl\). vol. 68 ( 2014) pp. 212– 237. · Zbl 1369.65126
[9] Shang, Y., Guo, B., \(Analysis of chebyshev pseudospectral method for multi‐dimentional generalized SRLW equations, Appl. Math. Mech\). vol. 24 ( 2003) pp. 1035– 1048.
[10] Guo, B., Shang, Y., \(Approximate inertial manifolds to the generalized symmetric regularized long wave equations with damping term, Acta Math. Appl. Sinica\). vol. 19 ( 2003) pp. 191– 204. · Zbl 1059.35105
[11] Fang, S., Guo, B., Qiu, H., \(The existence of global attractors for a system of multi‐dimensional symmetric regularized long wave equations, Commun. Nonlinear Sci. Numer. Simul\). vol. 14 ( 2009) pp. 61– 68. · Zbl 1221.35362
[12] Wang, T., Zhang, L., Chen, F., \(Conservative schemes for the symmetric regularized long wave equations, Appl. Math. Comput\). vol. 190 ( 2007) pp. 1063– 1080 · Zbl 1124.65080
[13] Bai, Y., Zhang, L., \(A conservative finite difference scheme for symmetric regularized long wave equations, Acta Math. Appl. Sinica\). vol. 30 ( 2007) pp. 248– 255. · Zbl 1142.65395
[14] Bai, Y., Zhang, L., \(A conservative finite difference scheme for generalized symmetric regularized long wave equations, Acta Math. Appl. Sinica\). vol. 35 ( 2012) pp. 458– 470. · Zbl 1274.65230
[15] Nie, T., Wang, T., \(Conservative finite difference method for the symmetric regularized‐long‐wave equation, Numer. Math. J. Chin. Univ\). vol. 29 ( 2007) pp. 257– 266.
[16] Hu, J., Xu, Y., Hu, B., \(A linear difference scheme for dissipative symmetric regularized long wave equations with damping term, Boundary Value Probl\). vol. 2010 ( 2010) pp. 1– 16. · Zbl 1207.65110
[17] Hu, J., Hu, B., Xu, Y., \(C‐N difference schemes for dissipative symmetric regularized long wave equations with damping term, Math. Probl. Eng\). vol. 2011 ( 2011) pp. 202– 214. · Zbl 1213.76125
[18] Nie, T., \(Adecoupled and conservative difference scheme with fourth‐order accuracy for the symmetric regularized long wave equations, Appl. Math. Comput\). vol. 219 ( 2013) pp. 9461– 9468. · Zbl 1290.76104
[19] Hu, J., Zheng, K., Zheng, M., \(Numerical simulation and convergence analysis of a high‐order conservative difference scheme for SRLW equation, Appl. Math. Model\). vol. 38 ( 2014) pp. 5573– 5581. · Zbl 1429.65185
[20] Yimnet, S., Wongsaijai, B., Rojsiraphisal, T., Poochinapan, K., \(Numerical implementation for solving the symmetric regularized long wave equation, Appl. Math. Comput\). vol. 273 ( 2016) pp. 809– 825. · Zbl 1410.65334
[21] Li, S., Wu, X., \(L\)^∞\(error bound of conservative compact difference scheme for the generalized symmetric regularized long‐wave (GSRLW) equations, Comput. Appl. Math\). vol. 2017 ( 2017) pp. 1– 21.
[22] Xu, Y., Hu, B., Xie, X., Hu, J., \(Mixed finite element analysis for dissipative SRLW equations with damping term, Appl. Math. Comput\). vol. 218 ( 2012) pp. 4788– 4797. · Zbl 1246.65183
[23] Mittal, R. C., Tripathi, A., \(Numerical solutions of symmetric regularized long wave equations using collocation of cubic B‐splines finite element, Int. J. Comput. Methods Eng. Sci. Mech\). vol. 16 ( 2015) pp. 142– 150. · Zbl 07871408
[24] Mittal, R. C., Tripathi, A., \(A collocation method for numerical solutions of coupled Burgers equations, Int. J. Comput. Methods Eng. Sci. Mech\). vol. 15 ( 2014) pp. 457– 471. · Zbl 07871391
[25] Mittal, R. C., Tripathi, A., \(Numerical solutions of generalized Burgers‐Fisher and generalized Burgers‐Huxley equations using collocation of cubic B‐splines, Int. J. Comput. Math\). vol. 92 ( 2015) pp. 1053– 1077. · Zbl 1314.65134
[26] Mittal, R. C., Tripathi, A., \(Numerical solutions of two‐dimensional Burgers' equations using modified Bi‐cubic B‐spline finite elements, Eng. Comput\). vol. 32 ( 2015) pp. 1275– 1306.
[27] Mittal, R. C., Tripathi, A., \(Numerical solutions of two‐dimensional unsteady convection‐diffusion problems using modified bi‐cubic B‐spline finite elements, Int. J. Comput. Math\). vol. 94 ( 2017) pp. 1– 21. · Zbl 1365.65229
[28] Li, S., Vu‐Quoc, L., \(Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein‐Gordon equation, SIAM J. Numer. Anal\). vol. 32 ( 1995) pp. 1839– 1875. · Zbl 0847.65062
[29] Zhang, F., Vctor, M. P., Luis, V., \(Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme, Appl. Math. Comput\). vol. 71 ( 1995) pp. 165– 177. · Zbl 0832.65136
[30] Pan, X., Zhang, L., \(On the convergence of a conservative numerical scheme for the usual Rosenau‐RLW equation, Appl. Math. Model\). vol. 36 ( 2012) pp. 3371– 3378. · Zbl 1252.65144
[31] Wang, T., Guo, B., Xu, Q., \(Fourth‐order compact and energy conservative difference schemes for the nonlinear Schröinger equation in two dimensions, J. Comput. Phys\). vol. 243 ( 2013) pp. 382– 399. · Zbl 1349.65347
[32] Li, S., Wang, J., Luo, Y., \(A fourth‐order conservative compact finite difference scheme for the generalized RLW equation, Math. Probl. Eng\). vol. 2015 ( 2015) p. 10. · Zbl 1394.65075
[33] Wang, H., Wang, J., Li, S., \(A new conservative nonlinear high‐order compact finite difference scheme for the general Rosenau‐RLW equation, Boundary Value Probl\). vol. 2015 ( 2015) pp. 1– 16. · Zbl 1339.65138
[34] Li, S., \(Numerical analysis for fourth‐order compact conservative difference scheme to solve the 3D Rosenau‐RLW equation, Comput. Math. Appl\). vol. 72 ( 2016) pp. 2388– 2407. · Zbl 1368.65141
[35] Omrani, K., Abidi, F., Achouri, T., \(A new conservative finite difference scheme for the Rosenau equation, Appl. Math. Comput\). vol. 201 ( 2008) pp. 35– 43. · Zbl 1156.65078
[36] Wongsaijai, B., Poochinapan, K., \(A three‐level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau‐KdV equation and the Rosenau‐RLW equation, Appl. Math. Comput\). vol. 245 ( 2014) pp. 289– 304. · Zbl 1336.65143
[37] Wang, T., \(Optimal point‐wise error estimate of a compact difference scheme for the Klein‐Gordon‐Schrödinger equation, J. Math. Anal. Appl\). vol. 412 ( 2014) pp. 155– 167. · Zbl 1308.65147
[38] Li, J., Sun, Z. Z., Zhao, X., \(A three level linearized compact difference scheme for the Cahn‐Hilliard equation, Sci. China Math\). vol. 55 ( 2012) pp. 805– 826. · Zbl 1262.65106
[39] Pan, X., Zhang, L., \(High‐order linear compact conservative method for the nonlinear Schrödinger equation coupled with the nonlinear Klein‐Gordon equation, Nonlinear Anal\). vol. 92 ( 2013) pp. 108– 118. · Zbl 1329.65185
[40] Hu, X., Chen, S., Chang, Q., \(Fourth‐order compact difference schemes for 1D nonlinear Kuramoto‐Tsuzuki equation, Numer. Methods Partial Differential Equations\) vol. 31 ( 2015) pp. 2080– 2109. · Zbl 1339.65119
[41] Hu, X., Zhang, L., \(Conservative compact difference schemes for the coupled nonlinear Schrödinger system, Numer. Methods Partial Differential Equations\). vol. 30 ( 2014) pp. 749– 772. · Zbl 1302.65192
[42] Wang, T., \(Optimal point‐wise error estimate of a compact difference scheme for the coupled gross‐pitaevskii equations in one dimension, J. Scientific Comput\). vol. 59 ( 2014) pp. 158– 186. · Zbl 1296.65116
[43] Wang, T., Zhang, L., Jiang, Y., \(Convergence of an efficient and compact finite difference scheme for the Klein‐Gordon‐Zakharov equation, Appl. Math. Comput\). vol. 221 ( 2013) pp. 433– 443. · Zbl 1329.65189
[44] Hao, Z., Sun, Z. Z., Cao, W., \(A three‐level linearized compact difference scheme for the Ginzburg‐Landau equation, Numer. Methods Partial Differential Equations\). vol. 31 ( 2014) pp. 876– 899. · Zbl 1320.65116
[45] Zhou, Y., Application of discrete functional analysis to the finite difference method, Inter. Acad. Publishers, Beijing, 1990.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.