×

Solution to infinity problem of scattering matrix using time-evolution operators without needing renormalization. (English) Zbl 07924227

Vlachos, Dimitrios (ed.), Mathematical modeling in physical sciences. 12th IC-MSQUARE, Belgrade, Serbia, August 28–31, 2023. Cham: Springer. Springer Proc. Math. Stat. 446, 403-427 (2024).
Summary: The current situation of research challenging the demanding tasks of renormalization implies that the present framework of quantum scattering theory does not offer good prospect and therefore in parallel with the development of renormalization, it is desirable to attempt to formulate a new theory able to solve the infinity problem fundamentally in a general way. Our purpose is to construct an alternative mathematical formulation capable of ensuring the convergence of the scattering matrix without relying on renormalization theory, thus preventing overlapping divergences of the scattering matrix in principle. We present alternative representations of the scattering matrix in terms of the local and global time-evolution operators which replace the Dyson series and do not need the Feynman diagram. Importantly, the obtained results clarify that substantially, there does not exist the infinity problem of the scattering matrix within the framework of our formulation. Ultimately, we draw the successful conclusion that it is possible to conceive of an alternative to the conventional scattering theory and our formalism as a new proposal can contribute to formulating a consistent theory without infinity and renormalization.
For the entire collection see [Zbl 1541.00044].

MSC:

00A69 General applied mathematics
00A79 Physics
00B25 Proceedings of conferences of miscellaneous specific interest
Full Text: DOI

References:

[1] Das, A.: Lectures on Quantum Field Theory, Chap. 6, 8. World Scientific (2008) · Zbl 1156.81002
[2] Dyson, F., The radiation theories of Tomonaga, Schwinger, and Feynman, Phys. Rev., 75, 406-502, 1949 · Zbl 0032.23702 · doi:10.1103/PhysRev.75.486
[3] Dyson, F., The S-matrix in quantum electrodynamics, Phys. Rev., 75, 1736-1755, 1949 · Zbl 0033.14201 · doi:10.1103/PhysRev.75.1736
[4] Ward, J., On the renormalization of quantum electrodynamics, Proc. Phys. Soc. London A, 64, 54-56, 1951 · Zbl 0042.45502 · doi:10.1088/0370-1298/64/1/309
[5] Salam, A., Overlapping divergences and the S-matrix, Phys. Rev., 82, 217-227, 1951 · Zbl 0042.45501 · doi:10.1103/PhysRev.82.217
[6] Weinberg, S., High energy behavior in quantum field theory, Phys. Rev., 118, 838-849, 1960 · Zbl 0098.20403 · doi:10.1103/PhysRev.118.838
[7] Stueckelberg, E.; Green, T., Elimination des constantes arbitraires dans la theéorie relativiste des quanta, Helv. Phys. Acta, 24, 153-174, 1951 · Zbl 0044.43002
[8] Bogoliubov, N.; Parasiuk, O., On the multiplication of propagators in quantum field theory, Acta Math., 97, 227-326, 1957
[9] Hepp, K., Proof of the Bogoliubov-Parasiuk theorem on renormalization, Commun. Math. Phys., 2, 301-326, 1966 · Zbl 1222.81219 · doi:10.1007/BF01773358
[10] Zimmermann, W., Convergence of Bogoliubov’s method of renormalization in momentum space, Commun. Math. Phys., 15, 208-234, 1969 · Zbl 0192.61203 · doi:10.1007/BF01645676
[11] Gelfand, I.; Yaglom, A., Integration in functional spaces and its applications in quantum physics, J. Math. Phys., 1, 48-69, 1960 · Zbl 0092.45105 · doi:10.1063/1.1703636
[12] Cameron, R., A family of integrals serving to connect the Wiener and Feynman integrals, J. Math. Phys. Sci. MIT, 39, 126-140, 1960 · Zbl 0096.06901 · doi:10.1002/sapm1960391126
[13] Helset, A., et al.: Geometry in Scattering Amplitudes. arXiv:2210.08000 [hep-ph] (2022)
[14] Abe, Y., Fukuma, M.: Gradient flow and the renormalization group. Prog. Theor. Exp. Phys. 083B02 (2018) · Zbl 1477.81088
[15] Makino, H., et al.: Gradient flow and the Wilsonian renormalization group flow. Prog. Theor. Exp. Phys. 053B02 (2018) · Zbl 07407906
[16] Pagani, C., Sonoda, H.: Products of composite operators in the exact renormalization group formalism. Prog. Theor. Exp. Phys. 023B02 (2018) · Zbl 07407856
[17] Corianò, C.; Maglio, MM, Renormalization, conformal ward identities and the origin of a conformal anomaly pole, Phys. Lett. B, 781, 283-289, 2018 · Zbl 1398.81205 · doi:10.1016/j.physletb.2018.04.003
[18] Dawid, SM, Renormalization group procedure for potential \(-g/r^2\), Phys. Lett. B, 777, 260-264, 2018 · Zbl 1411.81082 · doi:10.1016/j.physletb.2017.12.028
[19] Lippoldt, S., Renormalized functional renormalization group, Phys. Lett. B, 782, 275-279, 2018 · Zbl 1404.81187 · doi:10.1016/j.physletb.2018.05.037
[20] Maiezza, A.; Vasquez, JC, Renormalons in a general Quantum Field Theory, Ann. Phys., 394, 84-97, 2018 · Zbl 1390.81362 · doi:10.1016/j.aop.2018.04.027
[21] Cen, L-X, Revisiting numerical real-space renormalization group for quantum lattice systems, Ann. Phys., 397, 151-158, 2018 · doi:10.1016/j.aop.2018.08.003
[22] Bindera, M.; Schmidt, I., Functional renormalization group flow of massive gravity, Eur. Phys. J. C, 80, 271, 2020 · doi:10.1140/epjc/s10052-020-7835-8
[23] Gracey, JA, Renormalization of scalar field theories in rational spacetime dimensions, Eur. Phys. J. C, 80, 604, 2020 · doi:10.1140/epjc/s10052-020-8144-y
[24] Kuwahara, T., Tanaka, G., Tsuchiya, A., Yamashiro, K.: Exact renormalization group for wave functionals. arXiv:2211.05534 [hep-th] (2022)
[25] Bellon, MP; Clavier, PJ, Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale, Lett. Math. Phys., 108, 391-412, 2018 · Zbl 1382.81102 · doi:10.1007/s11005-017-1016-1
[26] Ohta, N.; Rachwal, L., Effective action from the functional renormalization group, Eur. Phys. J. C, 80, 877, 2020 · doi:10.1140/epjc/s10052-020-8325-8
[27] Ema, Y., Renormalization group equations of Higgs-\(R^2\) inflation, JHEP, 02, 109, 2021 · Zbl 1460.85004 · doi:10.1007/JHEP02(2021)109
[28] Giuliani, A., Gentle introduction to rigorous Renormalization Group: a worked fermionic example, JHEP, 01, 026, 2021 · Zbl 1459.81081 · doi:10.1007/JHEP01(2021)026
[29] Herren, F., On ambiguities and divergences in perturbative renormalization group functions, JHEP, 06, 116, 2021 · Zbl 1466.81066 · doi:10.1007/JHEP06(2021)116
[30] Buccio, D., et al.: Renormalization group flows between Gaussian fixed. JHEP 10, 113 (2022). points · Zbl 1534.81098
[31] Burke, M.D., et al.: Renormalized Perturbation Theory for Fast Evaluation of Feynman Diagrams on the Real Frequency Axis. arXiv:2211.02453 [cond-mat.str-el] (2022)
[32] Prinz, D.: Renormalization of Gauge Theories and Gravity. arXiv:2210.17510 [hep-th] (2022)
[33] Fraboulet, K.: Path-integral Approaches to Strongly-coupled Quantum Many-body Systems. arXiv:2210.16676 [cond-mat.str-el] (2022)
[34] Pottel, S., BPHZ renormalization in configuration space for the \(\cal{A}^4\)-model, Nucl. Phys. B, 927, 274-293, 2018 · Zbl 1380.81195 · doi:10.1016/j.nuclphysb.2017.12.020
[35] Helset, A., Renormalization of the standard model effective field theory from geometry, JHEP, 02, 063, 2023 · Zbl 1541.81105 · doi:10.1007/JHEP02(2023)063
[36] Moreno-Pulido, C.; Peracaula, JS, Renormalizing the vacuum energy in cosmological spacetime: implications for the cosmological constant problem, Eur. Phys. J. C, 82, 551, 2022 · doi:10.1140/epjc/s10052-022-10484-w
[37] Karki, S.; Altschul, B., Renormalization scheme dependence of \(\beta \)-functions in Lorentz-violating quantum field theory, Eur. Phys. J. C, 82, 676, 2022 · doi:10.1140/epjc/s10052-022-10627-z
[38] Casadio, R.; Kuntz, I.; Paci, G., Quantum fields in teleparallel gravity: renormalization at one-loop, Eur. Phys. J. C, 82, 186, 2022 · doi:10.1140/epjc/s10052-022-10157-8
[39] Huang, K., A critical history of renormalization, Int. J. Mod. Phys., 28, 29, 1330050, 2013 · doi:10.1142/S0217751X13300500
[40] Gavrilov, SP; Gitman, DM, Regularization, renormalization and consistency conditions in QED with x-electric potential steps, Eur. Phys. J. C, 80, 820, 2020 · doi:10.1140/epjc/s10052-020-8337-4
[41] Kreimer, D., On the Hopf algebra structure of perturbative quantum eld theories, Adv. Theor. Math. Phys., 2, 303, 1998 · Zbl 1041.81087 · doi:10.4310/ATMP.1998.v2.n2.a4
[42] Connes, A.; Kreimer, D., Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., 199, 203, 1998 · Zbl 0932.16038 · doi:10.1007/s002200050499
[43] Kazakov, DI, Kinematically dependent renormalization, Phys. Lett. B, 786, 327, 2018 · Zbl 1404.81181 · doi:10.1016/j.physletb.2018.10.002
[44] Curtright, TL; Zachos, CK, Renormalization group functional equations, Phys. Rev. D, 83, 2011 · doi:10.1103/PhysRevD.83.065019
[45] Hooft, GT, Renormalization without infinities, Int. J. Mod. Phys. A, 20, 6, 1336, 2005 · Zbl 1073.81064 · doi:10.1142/S0217751X05024249
[46] Slavnov, DA, The hybrid renormalization. Theo. Math. Phys., 122, 3, 335, 2000 · Zbl 0969.81043 · doi:10.1007/BF02551246
[47] Landau, L.D., Lifshitz, E.M.: Quantum Mechanics, Non-relativistic Theory, Chap. 2. Pergamon Press (1991)
[48] Greiner, W.: Quantum Mechanics, An Introduction, Chap. 10. Springer (2001) · Zbl 0979.81004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.