×

On the zeros of polyanalytic polynomials. (English) Zbl 07915175

Summary: We give sufficient conditions under which a polyanalytic polynomial of degree \(n\) has (i) at least one zero, and (ii) finitely many zeros. In the latter case, we prove that the number of zeros is bounded by \(n^2\). We then show that for all \(k \in \{0, 1, 2, \dots, n^2, \infty \}\) there exists a polyanalytic polynomial of degree \(n\) with exactly \(k\) distinct zeros. Moreover, we generalize the Lagrange and Cauchy bounds from analytic to polyanalytic polynomials and obtain inclusion disks for the zeros. Finally, we construct a harmonic and thus polyanalytic polynomial of degree \(n\) with \(n\) nonzero coefficients and the maximum number of \(n^2\) zeros.

MSC:

30G20 Generalizations of Bers and Vekua type (pseudoanalytic, \(p\)-analytic, etc.)

References:

[1] Abreu, L. D.; Feichtinger, H. G., Function spaces of polyanalytic functions, (Harmonic and Complex Analysis and Its Applications. Harmonic and Complex Analysis and Its Applications, Trends Math., 2014, Birkhäuser/Springer: Birkhäuser/Springer Cham), 1-38 · Zbl 1318.30070
[2] Balk, M. B., The fundamental theorem of algebra for polyanalytic polynomials, Litov. Mat. Sb., 8, 401-404, 1968, (in Russian) · Zbl 0206.08604
[3] Balk, M. B., Polyanalytic Functions, Mathematical Research, vol. 63, 1991, Akademie-Verlag: Akademie-Verlag Berlin · Zbl 0729.30039
[4] Balk, M. B., Polyanalytic functions and their generalizations, (Complex Analysis, I. Complex Analysis, I, Encyclopaedia Math. Sci., vol. 85, 1997, Springer: Springer Berlin), 195-253 · Zbl 0864.30035
[5] Bénéteau, C.; Hudson, N., A survey on the maximal number of solutions of equations related to gravitational lensing, (Complex Analysis and Dynamical Systems. Complex Analysis and Dynamical Systems, Trends Math., 2018, Birkhäuser/Springer: Birkhäuser/Springer Cham), 23-38 · Zbl 1405.30035
[6] Bosch, W.; Krajkiewicz, P., The big Picard theorem for polyanalytic functions, Proc. Am. Math. Soc., 26, 145-150, 1970 · Zbl 0201.10001
[7] Bshouty, D.; Hengartner, W.; Suez, T., The exact bound on the number of zeros of harmonic polynomials, J. Anal. Math., 67, 207-218, 1995 · Zbl 0862.30007
[8] Cauchy, A. L., Exercices de mathématiques, (Œuvres Complètes, Série 2, vol. 9, 1829, Gauthier-Villars: Gauthier-Villars Paris)
[9] Davis, P. J., The Schwarz Function and Its Applications, 1974, The Mathematical Association of America: The Mathematical Association of America Buffalo, NY · Zbl 0293.30001
[10] Duren, P., Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, vol. 156, 2004, Cambridge University Press: Cambridge University Press Cambridge · Zbl 1055.31001
[11] Duren, P.; Hengartner, W.; Laugesen, R. S., The argument principle for harmonic functions, Am. Math. Mon., 103, 411-415, 1996 · Zbl 0863.31001
[12] Geyer, L., Sharp bounds for the valence of certain harmonic polynomials, Proc. Am. Math. Soc., 136, 549-555, 2008 · Zbl 1133.26009
[13] Henrici, P., Applied and Computational Complex Analysis, 1974, Wiley-Interscience [John Wiley & Sons]: Wiley-Interscience [John Wiley & Sons] New York-London-Sydney · Zbl 0313.30001
[14] Huhtanen, M., Orthogonal polyanalytic polynomials and normal matrices, Math. Comput., 72, 355-373, 2003 · Zbl 1010.42013
[15] Huhtanen, M.; Larsen, R. M., Exclusion and inclusion regions for the eigenvalues of a normal matrix, SIAM J. Matrix Anal. Appl., 23, 1070-1091, 2002 · Zbl 1029.65034
[16] Khavinson, D.; Lundberg, E.; Perry, S., On the valence of logharmonic polynomials, (Recent Progress in Function Theory and Operator Theory. Recent Progress in Function Theory and Operator Theory, Contemp. Math., vol. 799, 2024, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 23-40 · Zbl 07861158
[17] Khavinson, D.; Świątek, G., On the number of zeros of certain harmonic polynomials, Proc. Am. Math. Soc., 131, 409-414, 2003 · Zbl 1034.30003
[18] Krajkiewicz, P.; Bosch, W., Polyanalytic functions with equal modulus, Proc. Am. Math. Soc., 23, 127-132, 1969 · Zbl 0181.36003
[19] Lee, S.-Y.; Lerario, A.; Lundberg, E., Remarks on Wilmshurst’s theorem, Indiana Univ. Math. J., 64, 1153-1167, 2015 · Zbl 1332.31001
[20] Lundberg, E., The valence of harmonic polynomials viewed through the probabilistic lens, Proc. Am. Math. Soc., 151, 2963-2973, 2023 · Zbl 1520.30010
[21] Marden, M., Geometry of Polynomials, Mathematical Surveys, vol. 3, 1966, American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0173.02703
[22] Panaitopol, L.; Ştefănescu, D., On the generalized difference polynomials, Pac. J. Math., 143, 341-348, 1990 · Zbl 0689.12013
[23] Peretz, R.; Schmid, J., On the zero sets of certain complex polynomials, (Proceedings of the Ashkelon Workshop on Complex Function Theory (1996). Proceedings of the Ashkelon Workshop on Complex Function Theory (1996), Israel Math. Conf. Proc., vol. 11, 1997, Bar-Ilan Univ.: Bar-Ilan Univ. Ramat Gan), 203-208 · Zbl 0909.30004
[24] Sète, O.; Luce, R.; Liesen, J., Perturbing rational harmonic functions by poles, Comput. Methods Funct. Theory, 15, 9-35, 2015 · Zbl 1311.31002
[25] Sète, O.; Zur, J., A Newton method for harmonic mappings in the plane, IMA J. Numer. Anal., 40, 2777-2801, 2020 · Zbl 1464.65046
[26] Sète, O.; Zur, J., Number and location of pre-images under harmonic mappings in the plane, Ann. Fenn. Math., 46, 225-247, 2021 · Zbl 1475.31004
[27] Sheil-Small, T., Tagungsbericht, (Funktionentheorie, 1992, Mathematisches Forschungsinstitut Oberwolfach), 18-19
[28] Sheil-Small, T., Complex Polynomials, Cambridge Studies in Advanced Mathematics, vol. 75, 2002, Cambridge University Press: Cambridge University Press Cambridge · Zbl 1012.30001
[29] Sorber, L.; Van Barel, M.; De Lathauwer, L., Numerical solution of bivariate and polyanalytic polynomial systems, SIAM J. Numer. Anal., 52, 1551-1572, 2014 · Zbl 1302.65135
[30] Suffridge, T. J.; Thompson, J. W., Local behavior of harmonic mappings, Complex Var. Theory Appl., 41, 63-80, 2000 · Zbl 1020.30015
[31] Wegert, E., Visual Complex Functions. An Introduction with Phase Portraits, 2012, Birkhäuser/Springer: Birkhäuser/Springer Basel AG, Basel · Zbl 1264.30001
[32] Wegert, E.; Semmler, G., Phase plots of complex functions: a journey in illustration, Not. Am. Math. Soc., 58, 768-780, 2011 · Zbl 1227.00032
[33] Wilmshurst, A. S., The valence of harmonic polynomials, Proc. Am. Math. Soc., 126, 2077-2081, 1998 · Zbl 0891.30009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.