×

Maximal rotational hypersurfaces having spacelike axis, spacelike profile curve in Minkowski geometry. (English) Zbl 07910319

Singh, Sandeep (ed.) et al., Algebra, analysis, and associated topics. Cham: Birkhäuser. Trends Math., 1-10 (2022).
For the entire collection see [Zbl 1515.20018].

MSC:

11Bxx Sequences and sets
Full Text: DOI

References:

[1] Arslan K., Bayram B.K., Bulca B., Öztürk G.: Generalized rotation surfaces in \({\mathbb{E}}^4 \). Results Math. 61 (3), 315-327 (2012). · Zbl 1256.53004
[2] Arslan K., Deszcz R., Yaprak Ş: On Weyl pseudosymmetric hypersurfaces. Colloq. Math. 72 (2), 353-361 (1997). · Zbl 0878.53013
[3] Arslan K., Milousheva V.: Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space. Taiwanese J. Math. 20 (2), 311-332 (2016). · Zbl 1357.53023
[4] Arvanitoyeorgos A., Kaimakamis G., Magid M.: Lorentz hypersurfaces in \(\mathbb{E}_1^4\) satisfying Δ \(H =  αH \). Ill. J. Math. 53 (2), 581-590 (2009). · Zbl 1190.53013
[5] Beneki Chr.C., Kaimakamis G., Papantoniou B.J.: Helicoidal surfaces in three-dimensional Minkowski space. J. Math. Anal. Appl. 275 586-614 (2002). · Zbl 1022.53016
[6] B.Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, (1st edn. World Scientific, Singapore, 1984). · Zbl 0537.53049
[7] Cheng Q.M., Wan Q.R.: Complete hypersurfaces of \({\mathbb{R}}^4\) with constant mean curvature. Monatsh. Math. 118 171-204 (1994). · Zbl 0814.53044
[8] Cheng S.Y., Yau S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 195-204 (1977). · Zbl 0349.53041
[9] Dillen F., Fastenakels J., Van der Veken J.: Rotation hypersurfaces of \(\mathbb{S}^n\times \mathbb{R}\) and \(\mathbb{H}^n\times \mathbb{R} \). Note Mat. 29 (1), 41-54 (2009). · Zbl 1220.53023
[10] Do Carmo M.P., Dajczer M.: Rotation hypersurfaces in spaces of constant curvature. Trans. Amer. Math. Soc. 277 685-709 (1983). · Zbl 0518.53059
[11] Ferrandez A., Garay O.J., Lucas P.: On a certain class of conformally at Euclidean hypersurfaces. (In Global Analysis and Global Differential Geometry. Berlin, Germany, 15-20 June, 48-54, 1990). · Zbl 0738.53035
[12] Ganchev G., Milousheva V.: General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 38 883-895 (2014). · Zbl 1300.53020
[13] Güler E.: Helical hypersurfaces in Minkowski geometry \(\mathbb{E}_1^4 \). Symmetry 12 (8), 1-16 (2020).
[14] Güler E.: Fundamental form IV  and curvature formulas of the hypersphere. Malaya J. Mat. 8 (4), 2008-2011 (2020).
[15] Güler E.: Rotational hypersurfaces satisfying \(Δ^{}IR =  AR\) in the four-dimensional Euclidean space. J. Polytech. 24 (2), 517-520 (2021).
[16] Güler E., Hacısalihoğlu H.H., Kim Y.H.: The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space. Symmetry 10 (9), 1-12 (2018).
[17] Güler E., Magid M., Yaylı Y.: Laplace-Beltrami operator of a helicoidal hypersurface in four-space. J. Geom. Symmetry Phys. 41 77-95 (2016). · Zbl 1358.53011
[18] Hasanis Th., Vlachos Th.: Hypersurfaces in \({\mathbb{E}}^4\) with harmonic mean curvature vector field. Math. Nachr. 172 145-169 (1995). · Zbl 0839.53007
[19] H.B. Lawson, Lectures on Minimal Submanifolds, (Vol. I. Mathematics Lecture Series, 2nd edn., 9. Publish or Perish, Inc.: Wilmington, Del., 1980). · Zbl 0434.53006
[20] Magid M., Scharlach C., Vrancken L.: Affine umbilical surfaces in \({\mathbb{R}}^4 \). Manuscripta Math. 88 275-289 (1995). · Zbl 0852.53014
[21] Moore C.: Surfaces of rotation in a space of four dimensions. Ann. Math. 21 81-93 (1919). · JFM 47.0974.01
[22] Moore C.: Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26 454-460 (1920). · JFM 47.0979.01
[23] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, (Academic Press. 1st edn. New York, 1983). · Zbl 0531.53051
[24] Takahashi T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18 380-385 (1966). · Zbl 0145.18601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.