×

Finite groups in which \(\sigma\)-quasinormality is a transitive relation. (English) Zbl 07905988

Let \(G\) be a finite group. A subgroup \(A \leq G\) is called quasinormal or subnormal if \(A\) permutes with every subgroup of \(G\) (that is, \(AH=HA\) for every \(H \leq G\)). Quasinormal subgroups have many interesting and useful for applications properties. For instance, if \(A\) is quasinormal in \(G\), then: \(A\) is subnormal in \(G\) [O. Ore, Duke math. J. 5, 431–460 (1939; JFM 65.0065.06)], \(A/A_{G}\) is nilpotent [N. Ito and J. Szep, Acta Sci. Math. 23, 168–170 (1962; Zbl 0112.02106)], every chief factor \(H/K\) of \(G\) between \(A_{G}\) and \(A_{G}\) is central [R. Maier and P. Schmid, Math. Z. 131, 269–272 (1973; Zbl 0259.20017)].
Let \(\sigma=\{ \sigma_{i} \mid i \in I \}\) be a partition of the set of all primes. A subgroup \(A\) of \(G\) is said to be: (i) \(\sigma\)-subnormal in \(G\) if there is a subgroup chain \(A=A_{0} \leq A_{1}\leq \ldots \leq A_{n}=G\) such that either \(A_{r-1} \trianglelefteq A_{r}\) or \(A_{r}/(A_{r-1})_{A_{r}}\) is a \(\sigma_{i}\)-group, \(i=i(r)\) for all \(r=1,2,\ldots,n\). (ii) modular in \(G\) if the following conditions are held: (a) \(\langle X, A \cap Z\rangle=\langle X, A \rangle \cap Z\) for all \(X \leq Z \leq G\); (b) \(\langle A, Y \cap Z\rangle = \langle A, Y \rangle \cap Z\) for all \(Y,Z \leq G\), such that \(A \leq Z\); (iii) \(\sigma\)-quasinormal in \(G\) if \(A\) is \(\sigma\)-subnormal and modular in \(G\).
The article under review is devoted to the study of the structure of finite groups in which \(\sigma\)-quasinormality (respectively, modularity) is a transitive relation. The authors also re-obtain some known results.

MSC:

20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20D15 Finite nilpotent groups, \(p\)-groups
20D30 Series and lattices of subgroups
Full Text: DOI

References:

[1] Schmidt, R., Subgroup Lattices of Groups, 1994, Walter de Gruyter: Walter de Gruyter Berlin · Zbl 0843.20003
[2] Skiba, A. N., On some results in the theory of finite partially soluble groups, Commun. Math. Stat., 4, 3, 281-309, 2016 · Zbl 1394.20011
[3] Skiba, A. N., On σ-subnormal and σ-permutable subgroups of finite groups, J. Algebra, 436, 1-16, 2015 · Zbl 1316.20020
[4] Ore, O., Contributions in the theory of groups of finite order, Duke Math. J., 5, 431-460, 1939 · JFM 65.0065.06
[5] Ito, N.; Szép, J., Uber die Quasinormalteiler von endlichen Gruppen, Acta Sci. Math., 23, 168-170, 1962 · Zbl 0112.02106
[6] Maier, R.; Schmid, P., The embedding of permutable subgroups in finite groups, Math. Z., 131, 269-272, 1973 · Zbl 0259.20017
[7] Thompson, J. G., An example of core-free quasinormal subgroup of p-group, Math. Z., 96, 226-227, 1973 · Zbl 0189.31702
[8] Skiba, A. N., On σ-properties of finite groups I, Probl. Phys. Math. Tech., 4, 21, 89-96, 2014 · Zbl 1325.20015
[9] Li, H.; Liu, A.-M.; Safonova, I. N.; Skiba, A. N., Characterizations of some classes of finite σ-soluble PσT-groups, Commun. Algebra, 52, 1, 128-139, 2024 · Zbl 1531.20024
[10] Liu, A-M.; Chen, M.; Safonova, I. N.; Skiba, A. N., Finite groups with modular σ-subnormal subgroups, J. Group Theory, 27, 3, 595-610, 2024 · Zbl 1537.20041
[11] Zhang, X.-F.; Guo, W.; Safonova, I. N.; Skiba, A. N., A Robinson description of finite PσT-groups, J. Algebra, 631, 218-235, 2023 · Zbl 1521.20040
[12] Kegel, O. H., Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband each enthalten, Arch. Math., 30, 1, 225-228, 1978 · Zbl 0943.20500
[13] Hu, B.; Huang, J.; Skiba, A. N., On σ-quasinormal subgroups of finite groups, Bull. Aust. Math. Soc., 99, 3, 413-420, 2019 · Zbl 1470.20011
[14] Ballester-Bolinches, A.; Esteban-Romero, R.; Asaad, M., Products of Finite Groups, 2010, Walter de Gruyter: Walter de Gruyter Berlin-New York · Zbl 1206.20019
[15] Zacher, G., I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., 37, 8, 150-154, 1964 · Zbl 0136.28302
[16] Robinson, D. J.S., The structure of finite groups in which permutability is a transitive relation, J. Aust. Math. Soc., 70, 143-159, 2001 · Zbl 0997.20027
[17] Zhang, X.-F.; Guo, W.; Safonova, I. N.; Skiba, A. N., Finite soluble groups with transitive σ-quasinormality relation, Math. Notes, 114, 5, 1021-1028, 2023 · Zbl 1535.20101
[18] Frigerio, A., Gruppi finiti nei quali e transitivo l’essere sottogruppi modulare, Atti R. Ist. Veneto Sci. Lett. Arti, Parte Seconda Sci. Mat. Nat., 132, 185-190, 1973-1974 · Zbl 0362.20015
[19] Zimmermann, I., Submodular subgroups of finite groups, Math. Z., 202, 545-557, 1989 · Zbl 0704.20018
[20] Doerk, K.; Hawkes, T., Finite Soluble Groups, 1992, Walter de Gruyter: Walter de Gruyter Berlin-New York · Zbl 0753.20001
[21] Liu, A.-M.; Guo, W.; Safonova, I. N.; Skiba, A. N., Finite groups in which modularity is a transitive relation, Arch. Math., 121, 2, 111-121, 2023 · Zbl 1529.20019
[22] Gorenstein, D., Finite Simple Groups. An Introduction to Their Classification, 1982, Plenum Press: Plenum Press New York and London · Zbl 0483.20008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.