×

Integrability and quench dynamics in the spin-1 central spin XX model. (English) Zbl 07903678

Summary: Central spin models provide an idealized description of interactions between a central degree of freedom and a mesoscopic environment of surrounding spins. We show that the family of models with a spin-1 at the center and XX interactions of arbitrary strength with surrounding spins is integrable. Specifically, we derive an extensive set of conserved quantities and obtain the exact eigenstates using the Bethe ansatz. As in the homogenous limit, the states divide into two exponentially large classes: bright states, in which the spin-1 is entangled with its surroundings, and dark states, in which it is not. On resonance, the bright states further break up into two classes depending on their weight on states with central spin polarization zero. These classes are probed in quench dynamics wherein they prevent the central spin from reaching thermal equilibrium. In the single spin-flip sector we explicitly construct the bright states and show that the central spin exhibits oscillatory dynamics as a consequence of the semilocalization of these eigenstates. We relate the integrability to the closely related class of integrable Richardson-Gaudin models, and conjecture that the spin-\(s\) central spin XX model is integrable for any \(s\).

MSC:

82Bxx Equilibrium statistical mechanics
81Rxx Groups and algebras in quantum theory
81Qxx General mathematical topics and methods in quantum theory

References:

[1] R. Kosloff, Quantum thermodynamics and open-systems modeling, J. Chem. Phys. 150, 204105 (2019), doi:10.1063/1.5096173. · doi:10.1063/1.5096173
[2] C. P. Koch, Controlling open quantum systems: Tools, achievements, and limitations, J. Phys.: Condens. Matter 28, 213001 (2016), doi:10.1088/0953-8984/28/21/213001. · doi:10.1088/0953-8984/28/21/213001
[3] G. de Lange, T. van der Sar, M. Blok, Z.-H. Wang, V. Dobrovitski and R. Hanson, Control-ling the quantum dynamics of a mesoscopic spin bath in diamond, Sci. Rep. 2, 382 (2012), doi:10.1038/srep00382. · doi:10.1038/srep00382
[4] J. Cai, A. Retzker, F. Jelezko and M. B. Plenio, A large-scale quantum simulator on a diamond surface at room temperature, Nat. Phys. 9, 168 (2013), doi:10.1038/nphys2519. · doi:10.1038/nphys2519
[5] T. Villazon, A. Polkovnikov and A. Chandran, Swift heat transfer by fast-forward driving in open quantum systems, Phys. Rev. A 100, 012126 (2019), doi:10.1103/PhysRevA.100.012126. · doi:10.1103/PhysRevA.100.012126
[6] L. Dong et al., Optimal control of a spin bath, Phys. Rev. A 99, 013426 (2019), doi:10.1103/PhysRevA.99.013426. · doi:10.1103/PhysRevA.99.013426
[7] M.-H. Yung, Spin star as a switch for quantum networks, J. Phys. B: At. Mol. Opt. Phys. 44, 135504 (2011), doi:10.1088/0953-4075/44/13/135504. · doi:10.1088/0953-4075/44/13/135504
[8] M. C. Tran and J. M. Taylor, Blind quantum computation using the central spin Hamilto-nian, (arXiv preprint) doi:10.48550/arXiv.1801.04006. · doi:10.48550/arXiv.1801.04006
[9] A. O. Sushkov, I. Lovchinsky, N. Chisholm, R. L. Walsworth, H. Park and M. D. Lukin, Magnetic resonance detection of individual proton spins using quantum reporters, Phys. Rev. Lett. 113, 197601 (2014), doi:10.1103/PhysRevLett.113.197601. · doi:10.1103/PhysRevLett.113.197601
[10] W.-B. He, S. Chesi, H.-Q. Lin and X.-W. Guan, Exact quantum dynamics of X X Z central spin problems, Phys. Rev. B 99, 174308 (2019), doi:10.1103/PhysRevB.99.174308. · doi:10.1103/PhysRevB.99.174308
[11] M. H. Abobeih et al., One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment, Nat. Commun. 9, 2552 (2018), doi:10.1038/s41467-018-04916-z. · doi:10.1038/s41467-018-04916-z
[12] M. H. Abobeih et al., Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor, Nature 576, 411 (2019), doi:10.1038/s41586-019-1834-7. · doi:10.1038/s41586-019-1834-7
[13] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha and L. M. K. Vander-sypen, Spins in few-electron quantum dots, Rev. Mod. Phys. 79, 1217 (2007), doi:10.1103/RevModPhys.79.1217. · doi:10.1103/RevModPhys.79.1217
[14] H. J. Mamin et al., Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor, Science 339, 557 (2013), doi:10.1126/science.1231540. · doi:10.1126/science.1231540
[15] I. Schwartz et al., Robust optical polarization of nuclear spin baths using Hamiltonian engineering of nitrogen-vacancy center quantum dynamics, Sci. Adv. 4, eaat8978 (2018), doi:10.1126/sciadv.aat8978. · doi:10.1126/sciadv.aat8978
[16] P. London et al., Detecting and polarizing nuclear spins with double res-onance on a single electron spin, Phys. Rev. Lett. 111, 067601 (2013), doi:10.1103/PhysRevLett.111.067601. · doi:10.1103/PhysRevLett.111.067601
[17] J. Schliemann, A. Khaetskii and D. Loss, Electron spin dynamics in quantum dots and related nanostructures due to hyperfine interaction with nuclei, J. Phys.: Condens. Matter 15, R1809 (2003), doi:10.1088/0953-8984/15/50/R01. · doi:10.1088/0953-8984/15/50/R01
[18] B. Urbaszek et al., Nuclear spin physics in quantum dots: An optical investigation, Rev. Mod. Phys. 85, 79 (2013), doi:10.1103/RevModPhys.85.79. · doi:10.1103/RevModPhys.85.79
[19] M. Tavis and F. W. Cummings, Exact solution for an N-molecule-radiation-field Hamilto-nian, Phys. Rev. 170, 379 (1968), doi:10.1103/PhysRev.170.379. · doi:10.1103/PhysRev.170.379
[20] Y. Kaluzny, P. Goy, M. Gross, J. M. and S. Haroche, Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance, Phys. Rev. Lett. 51, 1175 (1983), doi:10.1103/PhysRevLett.51.1175. · doi:10.1103/PhysRevLett.51.1175
[21] M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble and H. J. Carmichael, Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity, Phys. Rev. Lett. 63, 240 (1989), doi:10.1103/PhysRevLett.63.240. · doi:10.1103/PhysRevLett.63.240
[22] H. Walther, B. T. H. Varcoe, B.-G. Englert and T. Becker, Cavity quantum electrodynamics, Rep. Prog. Phys. 69, 1325 (2006), doi:10.1088/0034-4885/69/5/R02. · doi:10.1088/0034-4885/69/5/R02
[23] J. M. Fink et al., Dressed collective qubit states and the Tavis-Cummings model in circuit QED, Phys. Rev. Lett. 103, 083601 (2009), doi:10.1103/PhysRevLett.103.083601. · doi:10.1103/PhysRevLett.103.083601
[24] Z. Zhiqiang et al., Nonequilibrium phase transition in a spin-1 Dicke model, Optica 4, 424 (2017), doi:10.1364/OPTICA.4.000424. · doi:10.1364/OPTICA.4.000424
[25] P. Kirton, M. M. Roses, J. Keeling and E. G. D. Torre, Introduction to the Dicke model: From equilibrium to monequilibrium, and vice versa, Adv. Quantum Technol. 2, 1800043 (2018), doi:10.1002/qute.201800043. · doi:10.1002/qute.201800043
[26] M. Bortz and J. Stolze, Exact dynamics in the inhomogeneous central-spin model, Phys. Rev. B 76, 014304 (2007), doi:10.1103/PhysRevB.76.014304. · doi:10.1103/PhysRevB.76.014304
[27] A. Faribault, P. Calabrese and J.-S. Caux, Quantum quenches from integrability: The fermionic pairing model, J. Stat. Mech.: Theor. Exp. P03018 (2009), doi:10.1088/1742-5468/2009/03/P03018. · doi:10.1088/1742-5468/2009/03/P03018
[28] M. Bortz, S. Eggert, C. Schneider, R. Stübner and J. Stolze, Dynamics and decoher-ence in the central spin model using exact methods, Phys. Rev. B 82, 161308 (2010), doi:10.1103/PhysRevB.82.161308. · doi:10.1103/PhysRevB.82.161308
[29] A. Faribault and D. Schuricht, Integrability-based analysis of the hyperfine-interaction-induced decoherence in quantum dots, Phys. Rev. Lett. 110, 040405 (2013), doi:10.1103/PhysRevLett.110.040405. · doi:10.1103/PhysRevLett.110.040405
[30] P. W. Claeys, S. De Baerdemacker, O. El Araby and J.-S. Caux, Spin polarization through Floquet resonances in a driven central spin model, Phys. Rev. Lett. 121, 080401 (2018), doi:10.1103/PhysRevLett.121.080401. · doi:10.1103/PhysRevLett.121.080401
[31] T. Villazon, A. Chandran and P. W. Claeys, Integrability and dark states in an anisotropic central spin model, Phys. Rev. Res. 2, 032052 (2020), doi:10.1103/PhysRevResearch.2.032052. · doi:10.1103/PhysRevResearch.2.032052
[32] T. Villazon, P. W. Claeys, A. Polkovnikov and A. Chandran, Shortcuts to dynamic polariza-tion, Phys. Rev. B 103, 075118 (2021), doi:10.1103/PhysRevB.103.075118. · doi:10.1103/PhysRevB.103.075118
[33] M. Gaudin, The Bethe wavefunction, Cambridge University Press, Cambridge, UK, ISBN 9781107045859 (2014), doi:10.1017/CBO9781107053885. · Zbl 1335.81010 · doi:10.1017/CBO9781107053885
[34] J. Dukelsky, S. Pittel and G. Sierra, Colloquium: Exactly solvable Richardson-Gaudin models for many-body quantum systems, Rev. Mod. Phys. 76, 643 (2004), doi:10.1103/RevModPhys.76.643. · Zbl 1205.81155 · doi:10.1103/RevModPhys.76.643
[35] S. M. A. Rombouts, J. Dukelsky and G. Ortiz, Quantum phase diagram of the integrable p x + i p y fermionic superfluid, Phys. Rev. B 82, 224510 (2010), doi:10.1103/PhysRevB.82.224510. · doi:10.1103/PhysRevB.82.224510
[36] P. W. Richardson-Gaudin models and broken integrability, (arXiv preprint) doi:10.48550/arXiv.1809.04447. · doi:10.48550/arXiv.1809.04447
[37] S. R. Hartmann and E. L. Hahn, Nuclear double resonance in the rotating frame, Phys. Rev. 128, 2042 (1962), doi:10.1103/PhysRev.128.2042. · Zbl 0113.46404 · doi:10.1103/PhysRev.128.2042
[38] D. Rovnyak, Tutorial on analytic theory for cross-polarization in solid state NMR, Concepts Magn. Reson. 32A, 254 (2008), doi:10.1002/cmr.a.20115. · doi:10.1002/cmr.a.20115
[39] D. D. B. Rao, A. Ghosh, D. Gelbwaser-Klimovsky, N. Bar-Gill and G. Kurizki, Spin-bath polarization via disentanglement, New J. Phys. 22, 083035 (2020), doi:10.1088/1367-2630/aba29a. · doi:10.1088/1367-2630/aba29a
[40] P. Fernández-Acebal et al., Toward hyperpolarization of oil molecules via single nitrogen vacancy centers in diamond, Nano Lett. 18, 1882 (2018), doi:10.1021/acs.nanolett.7b05175. · doi:10.1021/acs.nanolett.7b05175
[41] C. W. Lai, P. Maletinsky, A. Badolato and A. Imamoḡlu, Knight-field-enabled nu-clear spin polarization in single quantum dots, Phys. Rev. Lett. 96, 167403 (2006), doi:10.1103/PhysRevLett.96.167403. · doi:10.1103/PhysRevLett.96.167403
[42] C. Dimo and A. Faribault, Strong-coupling emergence of dark states in X X central spin models, Phys. Rev. B 105, L121404 (2022), doi:10.1103/PhysRevB.105.L121404. · doi:10.1103/PhysRevB.105.L121404
[43] P. W. Claeys, C. Dimo, S. De Baerdemacker and A. Faribault, Integrable spin-1 2 Richardson-Gaudin X Y Z models in an arbitrary magnetic field, J. Phys. A: Math. Theor. 52, 08LT01 (2019), doi:10.1088/1751-8121/aafe9b. · Zbl 1505.81055 · doi:10.1088/1751-8121/aafe9b
[44] T. Skrypnyk, Classical r-matrices, “elliptic” BCS and Gaudin-type Hamiltonians and spectral problem, Nucl. Phys. B 941, 225 (2019), doi:10.1016/j.nuclphysb.2019.02.018. · Zbl 1415.82003 · doi:10.1016/j.nuclphysb.2019.02.018
[45] J. M. Taylor, A. Imamoḡlu and M. D. Lukin, Controlling a mesoscopic spin en-vironment by quantum bit manipulation, Phys. Rev. Lett. 91, 246802 (2003), doi:10.1103/PhysRevLett.91.246802. · doi:10.1103/PhysRevLett.91.246802
[46] M. Hillery, R. F. O’Connell, M. O. Scully and E. P. Wigner, Distribution functions in physics: Fundamentals, Phys. Rep. 106, 121 (1984), doi:10.1016/0370-1573(84)90160-1. · doi:10.1016/0370-1573(84)90160-1
[47] A. Polkovnikov, Phase space representation of quantum dynamics, Ann. Phys. 325, 1790 (2010), doi:10.1016/j.aop.2010.02.006. · Zbl 1194.81139 · doi:10.1016/j.aop.2010.02.006
[48] N. M. Bogoliubov, R. K. Bullough and J. Timonen, Exact solution of generalized Tavis -Cummings models in quantum optics, J. Phys. A: Math. Gen. 29, 6305 (1996), doi:10.1088/0305-4470/29/19/015. · Zbl 0906.35083 · doi:10.1088/0305-4470/29/19/015
[49] J. Dubail, T. Botzung, J. Schachenmayer, G. Pupillo and D. Hagenmüller, Large ran-dom arrowhead matrices: Multifractality, semilocalization, and protected transport in disordered quantum spins coupled to a cavity, Phys. Rev. A 105, 023714 (2022), doi:10.1103/PhysRevA.105.023714. · doi:10.1103/PhysRevA.105.023714
[50] I. Lukyanenko, P. S. Isaac and J. Links, An integrable case of the p+ip pairing Hamil-tonian interacting with its environment, J. Phys. A: Math. Theor. 49, 084001 (2016), doi:10.1088/1751-8113/49/8/084001. · Zbl 1342.81732 · doi:10.1088/1751-8113/49/8/084001
[51] T. Skrypnyk, Integrable quantum spin chains, non-skew symmetric r-matrices and quasigraded Lie algebras, J. Geom. Phys. 57, 53 (2006), doi:10.1016/j.geomphys.2006.02.002. · Zbl 1101.81064 · doi:10.1016/j.geomphys.2006.02.002
[52] T. Skrypnyk, Generalized Gaudin systems in a magnetic and non-skew-symmetric r-matrices, J. Phys. A: Math. Theor. 40, 13337 (2007), doi:10.1088/1751-8113/40/44/014. · Zbl 1127.81023 · doi:10.1088/1751-8113/40/44/014
[53] T. Skrypnyk, Non-skew-symmetric classical r-matrices, algebraic Bethe Ansatz, and Bardeen-Cooper-Schrieffer-type integrable systems, J. Math. Phys. 50, 033504 (2009), doi:10.1063/1.3072912. · Zbl 1202.17016 · doi:10.1063/1.3072912
[54] T. Skrypnyk, Non-skew-symmetric classical r-matrices and integrable cases of the re-duced BCS model, J. Phys. A: Math. Theor. 42, 472004 (2009), doi:10.1088/1751-8113/42/47/472004. · Zbl 1181.81063 · doi:10.1088/1751-8113/42/47/472004
[55] I. Lukyanenko, P. S. Isaac and J. Links, On the boundaries of quantum integra-bility for the spin-1/2 Richardson-Gaudin system, Nucl. Phys. B 886, 364 (2014), doi:10.1016/j.nuclphysb.2014.06.018. · Zbl 1325.82007 · doi:10.1016/j.nuclphysb.2014.06.018
[56] E. Iyoda, H. Katsura and T. Sagawa, Effective dimension, level statistics, and integrability of Sachdev-Ye-Kitaev-like models, Phys. Rev. D 98, 086020 (2018), doi:10.1103/PhysRevD.98.086020. · doi:10.1103/PhysRevD.98.086020
[57] J. Dukelsky, C. Esebbag and P. Schuck, Class of exactly solvable pairing models, Phys. Rev. Lett. 87, 066403 (2001), doi:10.1103/PhysRevLett.87.066403. · doi:10.1103/PhysRevLett.87.066403
[58] G. Ortiz, R. Somma, J. Dukelsky and S. Rombouts, Exactly-solvable models derived from a generalized Gaudin algebra, Nucl. Phys. B 707, 421 (2005), doi:10.1016/j.nuclphysb.2004.11.008. · Zbl 1137.82312 · doi:10.1016/j.nuclphysb.2004.11.008
[59] M. Van Raemdonck, S. De Baerdemacker and D. Van Neck, Exact solution of the p x + i p y pairing Hamiltonian by deforming the pairing algebra, Phys. Rev. B 89, 155136 (2014), doi:10.1103/PhysRevB.89.155136. · doi:10.1103/PhysRevB.89.155136
[60] S. Bravyi, D. P. DiVincenzo and D. Loss, Schrieffer-Wolff transformation for quantum many-body systems, Ann. Phys. 326, 2793 (2011), doi:10.1016/j.aop.2011.06.004. · Zbl 1230.81030 · doi:10.1016/j.aop.2011.06.004
[61] M. Bukov, M. Kolodrubetz and A. Polkovnikov, Schrieffer-Wolff transformation for peri-odically driven systems: Strongly correlated systems with artificial gauge fields, Phys. Rev. Lett. 116, 125301 (2016), doi:10.1103/PhysRevLett.116.125301. · doi:10.1103/PhysRevLett.116.125301
[62] L. D. Faddeev, How algebraic Bethe Ansatz works for integrable model, in Fifty Years of Mathematical Physics, World Scientific, Singapore, ISBN 9789814340953 (2016), doi:10.1142/9789814340960_0031. · doi:10.1142/9789814340960_0031
[63] J. Links, H.-Q. Zhou, R. H. McKenzie and M. D. Gould, Algebraic Bethe Ansatz method for the exact calculation of energy spectra and form factors: Applications to models of Bose Einstein condensates and metallic nanograins, J. Phys. A: Math. Gen. 36, R63 (2003), doi:10.1088/0305-4470/36/19/201. · Zbl 1032.82011 · doi:10.1088/0305-4470/36/19/201
[64] T. Skrypnyk, On the general solution of the permuted classical Yang-Baxter equation and quasigraded Lie algebras, J. Math. Phys. 63, 033507 (2022), doi:10.1063/5.0057668. · Zbl 1507.81118 · doi:10.1063/5.0057668
[65] T. Skrypnyk, Elliptic Gaudin-type model in an external magnetic field and modified algebraic Bethe Ansatz, Nucl. Phys. B 988, 116102 (2023), doi:10.1016/j.nuclphysb.2023.116102. · Zbl 1520.81091 · doi:10.1016/j.nuclphysb.2023.116102
[66] A. Imamoḡlu, E. Knill, L. Tian and P. Zoller, Optical pumping of quantum-dot nuclear spins, Phys. Rev. Lett. 91, 017402 (2003), doi:10.1103/PhysRevLett.91.017402. · doi:10.1103/PhysRevLett.91.017402
[67] H. Christ, I. Cirac and G. Giedke, Nuclear spin polarization in quan-tum dots -The homogeneous limit, Solid State Sci. 11, 965 (2009), doi:10.1016/j.solidstatesciences.2007.09.027. · doi:10.1016/j.solidstatesciences.2007.09.027
[68] C. Belthangady et al., Dressed-state resonant coupling between bright and dark spins in diamond, Phys. Rev. Lett. 110, 157601 (2013), doi:10.1103/PhysRevLett.110.157601. · doi:10.1103/PhysRevLett.110.157601
[69] N. Wu, X.-W. Guan and J. Links, Separable and entangled states in the high-spin X X central spin model, Phys. Rev. B 101, 155145 (2020), doi:10.1103/PhysRevB.101.155145. · doi:10.1103/PhysRevB.101.155145
[70] J. Links, Completeness of the Bethe states for the rational, spin-1/2 Richardson-Gaudin system, SciPost Phys. 3, 007 (2017), doi:10.21468/SciPostPhys.3.1.007. · doi:10.21468/SciPostPhys.3.1.007
[71] J. Links, On completeness of Bethe Ansatz solutions for sl(2) Richardson-Gaudin systems, in Physical and mathematical aspects of symmetries, Springer, Cham, Switzerland, ISBN 9783319691633 (2017), doi:10.1007/978-3-319-69164-0_36. · Zbl 1390.81229 · doi:10.1007/978-3-319-69164-0_36
[72] F. Wegner, Inverse participation ratio in 2 + ε dimensions, Z. Phys. B Condens. Matter Quanta 36, 209 (1980), doi:10.1007/BF01325284. · doi:10.1007/BF01325284
[73] F. Evers and A. D. Mirlin, Fluctuations of the inverse participation ratio at the Anderson transition, Phys. Rev. Lett. 84, 3690 (2000), doi:10.1103/PhysRevLett.84.3690. · doi:10.1103/PhysRevLett.84.3690
[74] T. Botzung, D. Hagenmüller, S. Schütz, J. Dubail, G. Pupillo and J. Schachenmayer, Dark state semilocalization of quantum emitters in a cavity, Phys. Rev. B 102, 144202 (2020), doi:10.1103/PhysRevB.102.144202. · doi:10.1103/PhysRevB.102.144202
[75] T. Kiendl and F. Marquardt, Many-particle dephasing after a quench, Phys. Rev. Lett. 118, 130601 (2017), doi:10.1103/PhysRevLett.118.130601. · doi:10.1103/PhysRevLett.118.130601
[76] B. Naydenov et al., Dynamical decoupling of a single-electron spin at room temperature, Phys. Rev. B 83, 081201 (2011), doi:10.1103/PhysRevB.83.081201. · doi:10.1103/PhysRevB.83.081201
[77] K. Rezai, S. Choi, M. D. Lukin and A. O. Sushkov, Probing dynamics of a two-dimensional dipolar spin ensemble using single qubit sensor, (arXiv preprint) doi:10.48550/arXiv.2207.10688. · doi:10.48550/arXiv.2207.10688
[78] P. Weinberg and M. Bukov, QuSpin: A Python package for dynamics and exact diagonal-isation of quantum many body systems part I: Spin chains, SciPost Phys. 2, 003 (2017), doi:10.21468/SciPostPhys.2.1.003. · doi:10.21468/SciPostPhys.2.1.003
[79] P. Weinberg and M. Bukov, QuSpin: A Python package for dynamics and exact diagonali-sation of quantum many body systems. Part II: Bosons, fermions and higher spins, SciPost Phys. 7, 020 (2019), doi:10.21468/SciPostPhys.7.2.020. · doi:10.21468/SciPostPhys.7.2.020
[80] Y. Y. Atas, E. Bogomolny, O. Giraud and G. Roux, Distribution of the ratio of consecu-tive level spacings in random matrix ensembles, Phys. Rev. Lett. 110, 084101 (2013), doi:10.1103/PhysRevLett.110.084101. · doi:10.1103/PhysRevLett.110.084101
[81] A. Kundu and O. Ragnisco, A simple lattice version of the nonlinear Schrodinger equation and its deformation with an exact quantum solution, J. Phys. A: Math. Gen. 27, 6335 (1994), doi:10.1088/0305-4470/27/19/008. · Zbl 0849.35131 · doi:10.1088/0305-4470/27/19/008
[82] L. Amico and V. Korepin, Universality of the one-dimensional Bose gas with delta interac-tion, Ann. Phys. 314, 496 (2004), doi:10.1016/j.aop.2004.08.001. · Zbl 1255.82056 · doi:10.1016/j.aop.2004.08.001
[83] A. Chervov, L. Rybnikov and D. Talalaev, Rational operators and their quantization, (arXiv preprint) doi:10.48550/arXiv.hep-th/0404106. · doi:10.48550/arXiv.hep-th/0404106
[84] D. Talalaev, Quantization of the Gaudin system, (arXiv preprint) doi:10.48550/arXiv.hep-th/0404153. · Zbl 1111.82015 · doi:10.48550/arXiv.hep-th/0404153
[85] J. Schachenmayer, A. Pikovski and A. M. Rey, Many-body quantum spin dynamics with Monte Carlo trajectories on a discrete phase space, Phys. Rev. X 5, 011022 (2015), doi:10.1103/PhysRevX.5.011022. · doi:10.1103/PhysRevX.5.011022
[86] A. Altland, V. Gurarie, T. Kriecherbauer and A. Polkovnikov, Nonadiabaticity and large fluctuations in a many-particle Landau-Zener problem, Phys. Rev. A 79, 042703 (2009), doi:10.1103/PhysRevA.79.042703. · doi:10.1103/PhysRevA.79.042703
[87] S. Pappalardi, A. Polkovnikov and A. Silva, Quantum echo dynamics in the Sherrington-Kirkpatrick model, SciPost Phys. 9, 021 (2020), doi:10.21468/SciPostPhys.9.2.021. · doi:10.21468/SciPostPhys.9.2.021
[88] T. Skrypnyk, Integrable modifications of Dicke and Jaynes-Cummings models, Bose-Hubbard dimers and classical r-matrices, J. Phys. A: Math. Theor. 43, 205205 (2010), doi:10.1088/1751-8113/43/20/205205. · Zbl 1189.81290 · doi:10.1088/1751-8113/43/20/205205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.