×

Painlevé analysis of the resonant third-order nonlinear Schrödinger equation. (English) Zbl 07901114

Summary: The resonant Schrödinger equation of the third order is studied. The Painlevé test for nonlinear partial differential equations is used to determine integrability of equation. It is shown that the necessary condition for integrability of partial differential equations by the inverse scattering transform is fulfilled at certain parameter restriction. Analytical solutions in the form of periodic and solitary wave are presented.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35C08 Soliton solutions
35B10 Periodic solutions to PDEs
35A20 Analyticity in context of PDEs
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

Software:

DLMF
Full Text: DOI

References:

[1] Kodama, Y.; Hasegawa, A., Nonlinear pulse propagation in a monomode dielectric guide, IEEE J. Quantum Electron., 23, 5, 510-524, 1987
[2] Eberly Joseph, H., Optical pulse and pulse-train propagation in a resonant medium, Phys. Rev. Lett., 22, 15, 760-762, 1969
[3] Mirzazadeh, M.; Ekici, Mehmet; Zhou, Qin; Biswas, Anjan, Exact solitons to generalized resonant dispersive nonlinear Schrodinger’s equation with power law nonlinearity, Optik, 130, 178-183, 2017
[4] Zhou, Qin; Wei, Chun; Zhang, Huijuan; Lu, Jun; Yu, Hua; Yao, Ping; Zhu, Qiuping, Exact solutions to the resonant nonlinear Schrodinger equation with both spatio-temporal and inter-modal dispersions, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 17, 4, 307-313, 2016
[5] Yanay, Hilla; Khaykovich, Lev; Malomed, Boris A., Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schrodinger equation, Chaos, 19, 3, 2009 · Zbl 1317.35245
[6] Lee, J.-H.; Pashaev, O. K.; Rogers, C.; Schief, W. K., The resonant nonlinear schrodinger equation in cold plasma physics. Application of Backlund-Darboux transformations and superposition principles, J. Plasma Phys., 73, 2, 257-272, 2007
[7] Pashaev, O. K.; Lee, J. H., Black holes and solutions of the quantized dispersionless NLS and DNLS equations, ANZIAM J., 44, 73-81, 2002 · Zbl 1040.35117
[8] Mirzazadeh, Mohammad; Zhou, Qin; Biswas, Anjan; Belic, Milivoj, Optical solitons of generalized resonant dispersive nonlinear Schrodinger’s equation with power law nonlinearity, Optoelectron. Adv. Mater. Rapid Commun., 9, 9-10, 1100-1103, 2015
[9] Lee, J.-H.; Pashaev, O. K., Solitons of the resonant nonlinear Schrodinger equation with nontrivial boundary conditions: Hirota bilinear method, Theoret. and Math. Phys., 152, 1, 991-1003, 2007 · Zbl 1131.37066
[10] Tala-Tebue, E.; Seadawy Aly, R., Construction of dispersive optical solutions of the resonant nonlinear Schrodinger equation using two different methods, Modern Phys. Lett. B, 32, 33, 2018
[11] Biswas, Anjan; Zhou, Qin; Moshokoa, Seithuti P.; Triki, Houria; Belic, Milivoj; Alqahtani, Rubayyi T., Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations, Optik, 145, 14-17, 2017
[12] Zayed, E. M.E.; Abdul-Ghani, Al-Nowehy, Solitons and other exact solutions for a class of nonlinear Schrodinger-type equations, Optik, 130, 1295-1311, 2017
[13] Ekici, Mehmet; Zhou, Qin; Sonmezoglu, Abdullah; Manafian, Jalil; Mirzazadeh, Mohammad, The analytical study of solitons to the nonlinear Schrodinger equation with resonant nonlinearity, Optik, 130, 378-382, 2017
[14] Pashaev, Oktay K.; Lee, Jyh-Hao; Rogers, Colin, Soliton resonances in a generalized nonlinear Schrodinger equation, J. Phys. A, 41, 45, 2008 · Zbl 1157.35106
[15] Biswas, Anjan; Jawad, Mohamad; Ja’afar, Anwar; Zhou, Qin, Resonant optical solitons with anti-cubic nonlinearity, Optik, 157, 525-531, 2018
[16] Li, Min; Xu, Tao; Wang, Lei; Qi, Feng-Hua, Nonautonomous solitons and interactions for a variable-coefficient resonant nonlinear Schrodinger equation, Appl. Math. Lett., 60, 8-13, 2016 · Zbl 1342.35344
[17] Kudryashov, N. A., Optical solitons of the resonant nonlinear Schrodinger equation with arbitrary index, Optik, 235, Article 166626 pp., 2021
[18] Biswas, Anjan; Yildirim, Yakup; Yasar, Emrullah; Zhou, Qin; Moshokoa, Seithuti P.; Belic, Milivoj, Optical soliton perturbation with resonant nonlinear Schrodinger’s equation having full nonlinearity by modified simple equation method, Optik, 160, 33-43, 2018 · Zbl 07820702
[19] Kudryashov, N. A., Solitons of the complex modified Korteweg-de Vries hierarchy, Chaos Solitons Fractals, 184, Article 115010 pp., 2024
[20] Seadawy, Aly R.; Iqbal, Mujahid; Lu, Dianchen, Ion-acoustic solitary wave solutions of nonlinear damped Korteweg-de Vries and damped modified Korteweg-de Vries dynamical equations, Indian J. Phys., 95, 7, 1479-1489, 2021
[21] Kong, Liang-Qian; Wang, Lei; Wang, Deng-Shan; Dai, Chao-Qing; Wen, Xiao-Yong; Xu, Ling, Evolution of initial discontinuity for the defocusing complex modified KdV equation, Nonlinear Dynam., 98, 1, 691-702, 2019 · Zbl 1430.37085
[22] Albares, Paz; Estevez, Pilar G., A comprehensive study of the complex mKdV equation through the singular manifold method, Mathematics, 11, 4, 2023
[23] Seadawy, Aly R.; Mujahid, Iqbal; Lu, Dianchen, Ion-acoustic solitary wave solutions of nonlinear damped Korteweg-de Vries and damped modified Korteweg-de Vries dynamical equations, Indian J. Phys., 95, 7, 1479-1489, 2021
[24] Sasa, N.; Satsuma, J., New-type of soliton solutions for a higher-order nonlinear Schrödinger equation, J. Phys. Soc. Japen, 60, 409-417, 1991 · Zbl 0920.35128
[25] Drazin, P. G.; Johnson, R. S., Solitons: An Introduction, 1989, Cambridge University Press · Zbl 0661.35001
[26] Ablowitz, M. J.; Clarkson, P. A., Solitons Nonlinear Evolution Equations and Inverse Scattering, 1991, Cambridge University Press · Zbl 0762.35001
[27] Goriely, A., Integrability and Nonintegrability of Dynamical Systems, 2001, World Scientific · Zbl 1002.34001
[28] Conte, R.; Musette, M., (The Painlevé Handbook. The Painlevé Handbook, Mathematical Physics Studies, 2020, Springer Nature: Springer Nature Switzerland AG), ISSN 0921-3767 ISSN 2352-3905 (electronic). ISBN 978-3-030-53339-7 ISBN 978-3-030-53340-3 (eBook). edition: Canopus Publishing Limited 2008 · Zbl 1153.34002
[29] Weiss, J.; Tabor, M.; Carnevale, G., The painleve property for partial differential equations, J. Math. Phys., 24, 3, 522-526, 1982 · Zbl 0514.35083
[30] Baldwin, D.; Hereman, W., Symbolic software for the Painlevé test of nonlinear ordinary and partial differential equations, J. Nonlinear Math. Phys., 13, 1, 90-110, 2006 · Zbl 1110.35300
[31] Kudryashov, N. A., Painlevé analysis and exact solutions of the Korteweg-de Vries equation with a source, Appl. Math. Lett., 41, 41-45, 2015 · Zbl 1321.35203
[32] Kudryashov, N. A.; Safonova, D. V.; Biswas, A., Painlevé analysis and a solution to the traveling wave reduction of the Radhakrishna-Kundu-Lakshmanan equation, Regul. Chaotic Dyn., 24, 607-614, 2019 · Zbl 1434.78022
[33] Kudryashov, N. A.; Safonova, D. V., Nonautonomous first integrals and general solutions of the KdVBurgers and mKdVBurgers equations with the source, Math. Methods Appl. Sci., 42, 13, 4627-4636, 2019 · Zbl 1428.34004
[34] Kudryashov, N. A.; Safonova, D. V., Painlevé analysis and travelling wave solutions of the fourth-order differential equation for pulse with non-local nonlinearity, Optik, 227, Article 166019 pp., 2021
[35] Hirota, R., Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14, 805, 1973 · Zbl 0257.35052
[36] Byrd, P. F.; Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists, 1971, Springer-Verlag: Springer-Verlag Berlin · Zbl 0213.16602
[37] (Olver, Frank William John; Lozier, Daniel W.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, 2010, National Institute of Standards and Technology (NIST), U.S. Department of Commerce, Cambridge University Press) · Zbl 1198.00002
[38] Polyanin, A. D.; Zaitsev, V. F., Handbook of Ordinary Differential Equations, 1496, 2017, Chapman and Hall/CRC: Chapman and Hall/CRC New York
[39] Kudryashov, N. A., Method for finding highly dispersive optical solitons of nonlinear differential equations, Optik, 206, Article 163550 pp., 2020
[40] Kudryashov, N. A., A generalized model for description of propagation pulses in optical fiber, Optik, 189, 42-52, 2019
[41] Kudryashov, N. A., Method for finding optical solitons of generalized nonlinear Schrodinger equations, Optik, 261, Article 169163 pp., 2022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.