×

Topological structure of the solution sets to non-autonomous evolution inclusions driven by measures on the half-line. (English) Zbl 07899344

Summary: In this article, we investigate a class of measure differential inclusions of evolution type involving non-autonomous operator with nonlocal condition defined on the half-line. By fixed point theorem, we first obtain some sufficient conditions to ensure the solution set is nonempty, compact, and \(R_\delta\)-set on compact interval. Subsequently, by means of the inverse limit method, we generalize the results on compact interval to noncompact interval. Finally, an example is given to demonstrate the effectiveness of obtained results.

MSC:

28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections
34G25 Evolution inclusions
35D30 Weak solutions to PDEs

References:

[1] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems, Princeton University Press, Princeton, 2012. · Zbl 1241.93002
[2] R. D. L. Kronig and W. G. Penney, Quantum mechanics of electrons in crystal lattices, Proc. R. Soc. Lond. A 130 (1931), no. 814, 499-513, DOI: https://doi.org/10.1098/rspa.1931.0019. · JFM 57.1587.02
[3] L. Di Piazza, V. Marraffa, and B. Satco, Approximating the solutions of differential inclusions driven by measures, Ann. Mat. Pura Appl. 198 (2019), no. 6, 2123-2140, DOI: https://doi.org/10.1007/s10231-019-00857-6. · Zbl 1440.34005
[4] M. Cichon and B. Satco, Existence theory for semilinear evolution inclusions involving measures, Math. Nachr. 290 (2017), no. 7, 1004-1016, DOI: https://doi.org/10.1002/mana.201600162. · Zbl 1367.26023
[5] L. Di Piazza, V. Marraffa, and B. Satco, Measure differential inclusions: Existence results and minimum problems, Set-Valued Var. Anal. 29 (2021), no. 2, 361-382, DOI: https://doi.org/10.1007/s11228-020-00559-9. · Zbl 1479.34008
[6] J. Andres and M. Pavlackova, Topological structure of solution sets to asymptotic boundary value problems, J. Differential Equations 248 (2010), no. 1, 127-150, DOI: https://doi.org/10.1016/j.jde.2009.08.010. · Zbl 1188.34015
[7] R. Bader and W. Kryszewski, On the solution sets of differential inclusions and the periodic problem in Banach spaces, Nonlinear Anal. 54 (2003), no. 4, 707-754, https://doi.org/10.1016/s0362-546x(03)00098-1. · Zbl 1034.34072 · doi:10.1016/s0362-546x(03)00098-1
[8] D. H. Chen, R. N. Wang, and Y. Zhou, Nonlinear evolution inclusions: topological characterizations of solution sets and applications, J. Functional Analysis 265 (2013), no. 9, 2039-2073, DOI: https://doi.org/10.1016/j.jfa.2013.05.033. · Zbl 1287.34055
[9] G. Gabor and A. Grudzka, Structure of the solution set to impulsive functional differential inclusions on the half-line, Nonlinear Differ. Equ. Appl. 2012 (2012), no. 19, 609-627, DOI: https://doi.org/10.1007/s00030-011-0144-z. · Zbl 1271.34065
[10] J. Wang, A. G. Ibrahim, and D. O Regan, Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions, J. Fixed Point Theory Appl. 20 (2018), no. 2, 59, DOI: 10.1007/s11784-018-0534-5. · Zbl 1398.34088
[11] Z. Alsheekhhussain, A. G. Ibrahim, and A. Ali, Topological structure of the solution sets for impulsive fractional neutral differential inclusions with delay and generated by a non-compact demi group, Fractal Fract. 6 (2022), no. 4, 188, DOI: https://doi.org/10.3390/fractalfract6040188.
[12] D. Bothe, Multivalued perturbations of m-accretive differential inclusions, Israel J. Math. 108 (1998), no. 1, 109-138, DOI: https://doi.org/10.1007/bf02783044. · Zbl 0922.47048
[13] K. Deimling, Multivalued Differential Equations, de Gruyter Ser. Nonlinear Anal. Appl., Walter de Gruyter and Co., Berlin, 1992. · Zbl 0760.34002
[14] S. C. Hu and N. S. Papageorgiou, On the topological regularity of the solution set of differential inclusions with constraints, J. Differential Equations 107 (1994), no.2, 280-289, DOI: https://doi.org/10.1006/jdeq.1994.1013. · Zbl 0796.34017
[15] F. S. De Blasi and G. Pianigiani, On the solution sets of nonconvex differential inclusions, J. Differential Equations 128 (1996), no. 2, 541-555, DOI: https://doi.org/10.1006/jdeq.1996.0105. · Zbl 0853.34013
[16] Y. Zhou and L. Peng, Topological properties of solution sets for partial functional evolution inclusions, Comptes Rendus Mathématique 355 (2017), no. 1, 45-64, DOI: https://doi.org/10.1016/j.crma.2016.11.011. · Zbl 1418.34140
[17] J. Andres, G. Gabor, and L. Gorniewicz, Topological structure of solution sets to multi-valued asymptotic problems, Z. Anal. Anwend. 19 (2000), no. 1, 35-60, DOI: https://doi.org/10.4171/zaa/937. · Zbl 0974.34045
[18] G. Gabor, Topological structure of solution sets to differential problems in Fréchet spaces, Ann. Polon. Math. 95 (2009), no. 1, 17-36, DOI: https://doi.org/10.4064/ap95-1-2. · Zbl 1169.34044
[19] R. N. Wang, Q. H. Ma, and Y. Zhou, Topological theory of non-autonomous parabolic evolution inclusions on a noncompact interval and applications, Math. Ann. 362 (2015), no. 1, 173-203, DOI: https://doi.org/10.1007/s00208-014-1110-y. · Zbl 1343.34154
[20] M. Benchohra and A. Ouahab, Controllability results for functional semilinear differential inclusions in Fréchet spaces, Nonlinear Anal. 61 (2005), no. 3, 405-423, DOI: https://doi.org/10.1016/j.na.2004.12.002. · Zbl 1086.34062
[21] J. Wang and Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl. 12 (2011), no. 1, 262-272, DOI: https://doi.org/10.1016/j.nonrwa.2010.06.013. · Zbl 1214.34010
[22] G. Gabor, Acyclicity of solution sets of inclusions in metric spaces, Topol. Methods Nonlinear Anal. 14 (1999), 327-343, DOI: https://doi.org/10.12775/tmna.1999.036. · Zbl 0954.54022
[23] P. Chen, X. Zhang, and Y. Li, Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl. 73 (2017), no. 5, 794-803, DOI: https://doi.org/10.1016/j.camwa.2017.01.009. · Zbl 1375.34115
[24] P. Chen, X. Zhang, and Y. Li, A blow up alternative result for fractional nonautonomous evolution equation of Volterra type, Commun. Pure Appl. Anal. 17 (2018), no. 5, 1975, DOI: https://doi.org/10.3934/cpaa.2018094. · Zbl 1397.35331
[25] X. Fu, Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions, Electron. J. Differential Equations 2012 (2012), no. 110, 1-15, http://ejde.math.txstate.edu. · Zbl 1260.34143
[26] E. Hernandez, On abstract differential equations with state dependent non-local conditions, J. Math. Anal. Appl. 466 (2018), no. 1, 408-425, DOI: https://doi.org/10.1016/j.jmaa.2018.05.080. · Zbl 1414.34059
[27] K. Ezzinbi and X. Fu, Existence and regularity of solutions for some neutral partial differential equations with nonlocal conditions, Nonlinear Anal. 57 (2004), no. 7-8, 1029-1041, DOI: https://doi.org/10.1016/j.na.2004.03.027. · Zbl 1059.34035
[28] E. Hernández and D. O Regan, On state dependent non-local conditions, Appl. Math. Lett. 83 (2018), no. 3, 103-109, DOI: https://doi.org/10.1016/j.aml.2018.03.022. · Zbl 1489.34089
[29] P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations 1 (1988), no. 4, 433-457, DOI: https:https://doi.org/10.57262/die/1372451947. · Zbl 0723.34046
[30] P. Acquistapace and B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Semin. Mat. Univ. Padova 78 (1987), 47-107, DOI: https://doi.org/10.1016/0022-1236(85)90050-3. · Zbl 0646.34006
[31] B. Satco, Regulated solutions for nonlinear measure driven equations, Nonlinear Anal. Hybrid Syst. 13 (2014), 22-31, DOI: https://doi.org/10.1016/j.nahs.2014.02.001. · Zbl 1295.45003
[32] M. Federson, R. Grau, J. G. Mesquita, and E. Toon, Boundedness of solutions of measure differential equations and dynamic equations on time scales, J. Differential Equations 263 (2017), no. 1, 26-56, DOI: https://doi.org/10.1016/j.jde.2017.02.008. · Zbl 1369.34050
[33] M. Tvrdy, Differential and Integral Equations in the Space of Regulated Functions, Habil, Doctoral dissertation, Academy of Sciences of the Czech Republic, 2001.
[34] A. B. A. Sambucini, The Henstock-Kurzweil integral for functions defined on unbounded intervals and with values in Banach spaces, Acta Math. (Nitra). 7 (2004), 3-17, DOI: https://hdl.handle.net/11391/156830.
[35] D. Frankova, Regulated functions with values in Banach space, Math. Bohem. 144 (2019), no. 4, 437-456, DOI: https://doi.org/10.21136/MB.2019.0124-19. · Zbl 1513.26079
[36] G. A. Monteiro and A. Slavík, Extremal solutions of measure differential equations, J. Math. Anal. Appl. 444 (2016), no. 1, 568-597, DOI: https://doi.org/10.1016/j.jmaa.2016.06.035. · Zbl 1356.34094
[37] L. Gorniewicz and M. Lassonde, Approximation and fixed points for compositions of Rδ-maps, Topology Appl. 55 (1994), no. 3, 239-250, DOI: https://doi.org/10.1016/0166-8641(94)90039-6. · Zbl 0793.54015
[38] M. I. Kamenskii, V. V. Obukhovskii, and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, New York, 2011.
[39] K. J. Engel, R. Nagel, and S. Brendle, One-parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000. · Zbl 0952.47036
[40] J. A. Goldstein, Semigroups of Linear Operators and Applications, Courier Dover Publications, New York, 2017. · Zbl 1364.47005
[41] W. E. Fitzgibbon, Semilinear functional differential equations in Banach space, J. Differential Equations 29 (1978), no. 1, 1-14, DOI: https://doi.org/10.1016/0022-0396(78)90037-2. · Zbl 0392.34041
[42] D. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math. 64 (1969), no. 1, 91-97, DOI: https://doi.org/10.4064/fm-64-1-91-97. · Zbl 0174.25804
[43] J. Banas, On measures of noncompactness in Banach spaces, Comment. Math. Univ. Carolin. 21 (1980), no. 1, 131-143, DOI: http://dml.cz/dmlcz/105982. · Zbl 0438.47051
[44] R. Engelking, R. W. Heath, and E. Michael, Topological well-ordering and continuous selections, Set-Valued Mappings, Selections and Topological Properties of 2x: Proceedings of the conference held at the State University of New York at Buffalo May 8-10, 1969, Springer, Berlin Heidelberg, 2006, pp. 8-11, DOI: https://doi.org/10.1007/bf01425452. · Zbl 0204.22401
[45] G. Gabor, Some results on existence and structure of solution sets to differential inclusions on the halfline, Boll. Unione Mat. Ital. 2002 (2002), no. 2, 431-446, DOI: http://eudml.org/doc/195001. · Zbl 1102.34007
[46] J. Andres, G. Gabor, and L. Gorniewicz, Acyclicity of solution sets to functional inclusions, Nonlinear Anal. 49 (2002), no. 5, 671-688, DOI: https://doi.org/10.1016/s0362-546x(01)00131-6. · Zbl 1012.34011
[47] B. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete-continuous Systems, Springer Science & Business Media, New York, 2003. · Zbl 1065.49022
[48] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Science & Business Media, New York, 2012.
[49] J. M. Ball, Geometric theory of semilinear parabolic equations (Lecture Notes in Mathematics, 840), Bull. Lond. Math. Soc. 14 (1982), 270-271, DOI: https://doi.org/10.1112/blms/14.3.270.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.