×

An augmented subspace based adaptive proper orthogonal decomposition method for time dependent partial differential equations. (English) Zbl 07899001

Summary: In this paper, we propose an augmented subspace based adaptive proper orthogonal decomposition (POD) method for solving the time dependent partial differential equations. We use the difference between the approximation obtained in the augmented subspace and that obtained in the original POD subspace to construct an error indicator, by which we obtain a general framework for augmented subspace based adaptive POD method. We then provide two strategies to construct the augmented subspaces, the residual type augmented subspace and the coarse-grid approximation type augmented subspace. We apply our new methods to two typical 3D advection-diffusion equations with the advection being the Kolmogorov flow and the ABC flow. Numerical results show that both the residual type augmented subspace based adaptive POD method and the coarse-grid approximation type augmented subspace based adaptive POD method are more efficient than the existing adaptive POD methods, especially for the advection dominated models.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Nxx Numerical methods for partial differential equations, boundary value problems
35Kxx Parabolic equations and parabolic systems

References:

[1] Adams, R. A., Sobolev Spaces, 1975, Academic Press: Academic Press New York · Zbl 0314.46030
[2] Bakker, M., Simple groundwater flow models for seawater intrusion, (Proceedings of SWIM16, 2000, WolinIsland: WolinIsland Poland), 180-182
[3] Batchelor, G. K., An Introduction to Fluid Dynamics, 1999, Cambridge University Press: Cambridge University Press Cambridge · Zbl 0958.76001
[4] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57, 483-531, 2015 · Zbl 1339.37089
[5] Benner, P.; Kürschner, P.; Saak, J., Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations, Electron. Trans. Numer. Anal., 43, 142-162, 2014 · Zbl 1312.65068
[6] Borue, V.; Orszag, S. A., Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers, J. Fluid Mech., 306, 293-323, 1996 · Zbl 0857.76034
[7] Boyaval, S.; Le Bris, C.; Lelievre, T.; Maday, Y.; Nguyen, N. C.; Patera, A. T., Reduced basis techniques for stochastic problems, Arch. Comput. Methods Eng., 17, 435-454, 2010 · Zbl 1269.65005
[8] Brenner, S.; Scott, L., The Mathematical Theory of Finite Element Methods, 2008, Springer: Springer New York · Zbl 1135.65042
[9] Brummell, N. H.; Cattaneo, F.; Tobias, S. M., Linear and nonlinear dynamo properties of time-dependent ABC flows, Fluid Dyn. Res., 28, 237-265, 2001
[10] Burkardt, J.; Gunzburger, M.; Lee, H. C., POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Eng., 196, 337-355, 2006 · Zbl 1120.76323
[11] Cannon, J. R., The One-Dimensional Heat Equation, 1984, Addison-Wesley: Addison-Wesley Mento Park · Zbl 0567.35001
[12] Chellappa, S.; Feng, L.; Benner, P., Adaptive basis construction and improved error estimation for parametric nonlinear dynamical systems, Int. J. Numer. Methods Eng., 121, 5320-5349, 2020 · Zbl 07864078
[13] Chinesta, F.; Huerta, A.; Rozza, G.; Willcox, K., Model Reduction Methods, Encyclopedia of Computational Mechanics, 1-36, 2017
[14] Dai, X.; Kuang, X.; Liu, Z.; Xin, J.; Zhou, A., An adaptive proper orthogonal decomposition Galerkin method for time dependent problems, 2017, preprint
[15] Dai, X.; Kuang, X.; Xin, J.; Zhou, A., Two-grid based adaptive proper orthogonal decomposition method for time dependent partial differential equations, J. Sci. Comput., 84, 1-27, 2020 · Zbl 1448.65128
[16] Dai, X.; Xu, J.; Zhou, A., Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer. Math., 110, 313-355, 2008 · Zbl 1159.65090
[17] Dickinson, B. T.; Singler, J. R., Nonlinear model reduction using group proper orthogonal decomposition, Int. J. Numer. Anal. Model., 7, 356-372, 2010 · Zbl 1499.35732
[18] Dombre, T.; Frisch, U.; Greene, J. M.; Hénon, M.; Mehr, A.; Soward, A. M., Chaotic streamlines in the ABC flows, J. Fluid Mech., 167, 353-391, 1986 · Zbl 0622.76027
[19] Druault, P.; Delville, J.; Bonnet, J. P., Proper orthogonal decomposition of the mixing layer flow into coherent structures and turbulent Gaussian fluctuations, C. R., Méc., 333, 824-829, 2005 · Zbl 1177.76149
[20] Golub, G. H.; van Loan, C. F., Matrix Computations, 2013, JHU Press · Zbl 1268.65037
[21] Gräßle, C.; Hinze, M., POD reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations, Adv. Comput. Math., 44, 1941-1978, 2018 · Zbl 1404.65264
[22] Gu, A.; Xin, J.; Zhang, Z., Error estimates for a POD method for solving viscous G-equation in incompressible cellular flows, SIAM J. Sci. Comput., 43, A636-A662, 2021 · Zbl 1469.65156
[23] He, Y., The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Math. Comput., 77, 2097-2124, 2008 · Zbl 1198.65222
[24] Hesthaven, J. S.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. DXC, 2016, Springer · Zbl 1329.65203
[25] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 1996, Cambridge University Press: Cambridge University Press Cambridge · Zbl 0890.76001
[26] Homescu, C.; Petzold, L. R.; Serban, R., Error estimation for reduced-order models of dynamical systems, SIAM J. Numer. Anal., 43, 1693-1714, 2005 · Zbl 1096.65076
[27] Katayama, T.; Kawauchi, H.; Picci, G., Subspace identification of closed loop systems by the orthogonal decomposition method, Atomatica, 41, 863-872, 2005 · Zbl 1093.93029
[28] Khalil, M.; Adhikari, S.; Sarkar, A., Linear system identification using proper orthogonal decomposition, Mech. Syst. Signal Process., 21, 3123-3145, 2007
[29] Koc, B.; Rubino, S.; Schneier, M.; Singler, J.; Iliescu, T., On optimal pointwise in time error bounds and difference quotients for the proper orthogonal decomposition, SIAM J. Numer. Anal., 59, 2163-2196, 2021 · Zbl 1493.65154
[30] Kosloff, D.; Kosloff, R., A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics, J. Comput. Phys., 52, 35-53, 1983 · Zbl 0513.65079
[31] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90, 117-148, 2001 · Zbl 1005.65112
[32] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J. Numer. Anal., 40, 492-515, 2002 · Zbl 1075.65118
[33] Kunisch, K.; Volkwein, S., Optimal snapshot location for computing POD basis functions, ESAIM: Math. Model. Numer. Anal., 44, 509-529, 2010 · Zbl 1193.65113
[34] Li, H.; Song, Z., A reduced-order finite element method based on proper orthogonal decomposition for the Allen-Cahn model, J. Math. Anal. Appl., 500, Article 125103 pp., 2021 · Zbl 1468.65145
[35] Li, K.; Huang, T.; Li, L.; Lanteri, S., POD-based model order reduction with an adaptive snapshot selection for a discontinuous Galerkin approximation of the time-domain Maxwell’s equations, J. Comput. Phys., 396, 106-128, 2019 · Zbl 1452.78035
[36] Locke, S.; Singler, J., New proper orthogonal decomposition approximation theory for PDE solution data, SIAM J. Numer. Anal., 58, 3251-3285, 2020 · Zbl 1453.65114
[37] Ly, H. V.; Tran, H. T., Modeling and control of physical processes using proper orthogonal decomposition, Math. Comput. Model., 33, 223-236, 2001 · Zbl 0966.93018
[38] Lyu, J.; Wang, Z.; Xin, J.; Zhang, Z., A convergent interaction particle method and computation of KPP front speeds in chaotic flows, SIAM J. Numer. Anal., 60, 1136-1167, 2022 · Zbl 07538279
[39] Lyu, J.; Xin, J.; Yu, Y., Computing residual diffusivity by adaptive basis learning via spectral method, Numer. Math. Theory Methods Appl., 10, 351-372, 2017 · Zbl 1389.76035
[40] Maday, Y., Reduced basis method for the rapid and reliable solution of partial differential equations, (Proceedings of International Conference of Mathematicians, European Mathematical Society, vol. III, 2006), 1255-1270 · Zbl 1100.65079
[41] Markowych, P. A.; Ringhofer, C. A.; Schmeiser, C., Semiconductor Equations, 1990, Springer: Springer Vienna · Zbl 0765.35001
[42] Nolen, J.; Rudd, M.; Xin, J., Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dyn. Partial Differ. Equ., 2, 1-24, 2005 · Zbl 1179.35166
[43] Obukhov, A. M., Kolmogorov flow and its laboratory simulation, Rus. Uspekhi Mat. Nauk, 38, 101-111, 1983
[44] Padhi, R.; Balakrishnan, S. N., Proper orthogonal decomposition based optimal neurocontrol synthesis of a chemical reactor process using approximate dynamic programming, Neural Netw., 16, 719-728, 2003
[45] Peherstorfer, B.; Willcox, K., Dynamic data-driven reduced-order models, Comput. Methods Appl. Mech. Eng., 291, 21-41, 2015 · Zbl 1425.65205
[46] PETSc
[47] Phg
[48] Pinnau, R., Model reduction via proper orthogonal decomposition, (Model Order Reduction: Theory, Research Aspects and Applications, 2008, Springer: Springer Berlin, Heidelberg) · Zbl 1154.93012
[49] Quarteroni, A.; Rozza, G., Reduced Order Methods for Modeling and Computational Reduction, vol. IX, 2014, Springer: Springer Berlin · Zbl 1280.65004
[50] Rapún, M. L.; Terragni, F.; Vega, J. M., Adaptive POD-based low-dimensional modeling supported by residual estimates, Int. J. Numer. Methods Eng., 104, 844-868, 2015 · Zbl 1352.65368
[51] Rowley, C.; Colonius, T.; Murray, R., Model reduction for compressible flows using POD and Galerkin projection, Physica D, 189, 115-129, 2004 · Zbl 1098.76602
[52] Saad, Y.; Schultz, M., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869, 1986 · Zbl 0599.65018
[53] Sirovich, L., Turbulence and the dynamics of coherent structures, part I: coherent structures, Q. Appl. Math., 45, 561-571, 1987 · Zbl 0676.76047
[54] Strikwerda, J., Finite Difference Schemes and Partial Differential Equations, 2004, SIAM: SIAM Philadelphia · Zbl 1071.65118
[55] Tabib, M. V.; Joshi, J. B., Analysis of dominant flow structures and their flow dynamics in chemical process equipment using snapshot proper orthogonal decomposition technique, Chem. Eng. Sci., 63, 3695-3715, 2008
[56] Terragni, F.; Vega, J. M., Simulation of complex dynamics using POD ‘on the fly’ and residual estimates, (Dynamical Systems, Differential Equations and Applications AIMS Proceedings, 2015), 1060-1069 · Zbl 1334.78046
[57] Volkwein, S., Model Reduction Using Proper Orthogonal Decomposition, Lecture Notes, Institute of Mathematics and Scientific Computing, vol. MXXV, 2011, University of Graz: University of Graz Graz
[58] Volkwein, S., Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling, Lecture Notes, 2013, Department of Mathematics and Statistics, University of Konstanz
[59] Wang, Z.; Xin, J.; Zhang, Z., Sharp uniform in time error estimate on a stochastic structure-preserving Lagrangian method and computation of effective diffusivity in 3D chaotic flows, SIAM Multiscale Model. Simul., 19, 1167-1189, 2021 · Zbl 1496.65192
[60] Xin, J.; Yu, Y.; Zlatos, A., Periodic orbits of the ABC flow with A = B = C = 1, SIAM J. Math. Anal., 48, 4087-4093, 2016 · Zbl 1366.34062
[61] Xu, C.; Ou, Y.; Schuster, E., Sequential linear quadratic control of bilinear parabolic PDEs based on POD model reduction, Automatica, 47, 418-426, 2011 · Zbl 1207.49025
[62] Zu, P.; Chen, L.; Xin, J., A computational study of residual KPP front speeds in time-periodic cellular flows in the small diffusion limit, Physica D, 311, 37-44, 2015 · Zbl 1364.76105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.