×

A non-Newtonian approach in differential geometry of curves: multiplicative rectifying curves. (English) Zbl 07898763

If the position vector of a curve in three-space lies in its osculating plane, the curve is planar. If it lies in the normal plane, it is spherical. These observation made B.-Y. Chen ask for curves in three-space whose position vector always lies in its rectifying plane [Am. Math. Monthly 110, No. 2, 147–152 (2003; Zbl 1035.53003)]. His central result was the characterization of these “rectifying curves”, up to re-parametrization, as spherical unit speed curves times the secant of the curve parameter.
This paper studies rectifying curves in multiplicative differential geometry [S. G. Georgiev, Multiplicative differential geometry. Boca Raton, FL: CRC Press (2022; Zbl 1508.53001)] which differs from classical differential geometry by the isomorphism \(x \mapsto \mathrm{e}^x\) of the field of real numbers that underlies all computations. It recovers Chen’s characterization of rectifying curves in this multiplicative setting.

MSC:

53A04 Curves in Euclidean and related spaces

References:

[1] D. Aniszewska, Multiplicative Runge-Kutta methods, Nonlinear Dyn. 50 (2007), 265-272. https://doi.org/10.1007/s11071-006-9156-3 · Zbl 1178.65082 · doi:10.1007/s11071-006-9156-3
[2] D. Aniszewska and M. Rybaczuk, Analysis of the multiplicative Lorenz system, Chaos Solitons Fractals. 25 (2005), no. 1, 79-90. https://doi.org/10.1016/j.chaos.2004.09. 060 · Zbl 1079.37020 · doi:10.1016/j.chaos.2004.09.060
[3] D. Aniszewska and M. Rybaczuk, Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems, Nonlinear Dynam. 54 (2008), no. 4, 345-354. https://doi.org/10.1007/s11071-008-9333-7 · Zbl 1170.70010 · doi:10.1007/s11071-008-9333-7
[4] M. E. Aydin, Effect of local fractional derivatives on Riemann curvature tensor, Ex. Countex. 5 (2024), 100134. https://doi.org/10.1016/j.exco.2023.100134 · doi:10.1016/j.exco.2023.100134
[5] M. E. Aydin, A. Mihai, and A. Yokuş, Applications of fractional calculus in equiaffine geometry: plane curves with fractional order, Math. Methods Appl. Sci. 44 (2021), no. 17, 13659-13669. https://doi.org/10.1002/mma.7649 · Zbl 1491.53013 · doi:10.1002/mma.7649
[6] D. Baleanu and S. I. Vacaru, Constant curvature coefficients and exact solutions in fractional gravity and geometric mechanics, Cent. Eur. J. Phys. 9 (2011), no. 5, 1267-1279. https://doi.org/10.2478/s11534-011-0040-5 · doi:10.2478/s11534-011-0040-5
[7] D. Baleanu and S. I. Vacaru, Fractional almost Kähler-Lagrange geometry, Nonlinear Dynam. 64 (2011), no. 4, 365-373. https://doi.org/10.1007/s11071-010-9867-3 · doi:10.1007/s11071-010-9867-3
[8] A. E. Bashirov, E. Mısırlı, and A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl. 337 (2008), no. 1, 36-48. https://doi.org/10.1016/j.jmaa.2007. 03.081 · Zbl 1129.26007 · doi:10.1016/j.jmaa.2007.03.081
[9] A. E. Bashirov, E. Mısırlı, Y. Tandogdu, and A. Özyapıcı, On modeling with multi-plicative differential equations, Appl. Math. J. Chinese Univ. Ser. B 26 (2011), no. 4, 425-438. https://doi.org/10.1007/s11766-011-2767-6 · Zbl 1265.00007 · doi:10.1007/s11766-011-2767-6
[10] A. E. Bashirov and S. Norozpour, On an alternative view to complex calculus, Math. Methods Appl. Sci. 41 (2018), no. 17, 7313-7324. https://doi.org/10.1002/mma.4827 · Zbl 1405.30039 · doi:10.1002/mma.4827
[11] A. E. Bashirov and M. Riza, On complex multiplicative differentiation, TWMS J. Appl. Eng. Math. 1 (2011), no. 1, 75-85. · Zbl 1238.30003
[12] A. F. C ¸akmak and F. Başar, Some new results on sequence spaces with respect to non-Newtonian calculus, J. Inequal. Appl. 2012 (2012), 228, 17 pp. https://doi.org/10. 1186/1029-242X-2012-228 · Zbl 1279.26006 · doi:10.1186/1029-242X-2012-228
[13] B.-Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110 (2003), no. 2, 147-152. https://doi.org/10.2307/ 3647775 · Zbl 1035.53003 · doi:10.2307/3647775
[14] B.-Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math. 48 (2017), no. 2, 209-214. https://doi.org/10.5556/j.tkjm.48. 2017.2382 · Zbl 1371.53002 · doi:10.5556/j.tkjm.48.2017.2382
[15] B.-Y. Chen and F. J. E. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sinica 33 (2005), no. 2, 77-90. · Zbl 1082.53012
[16] F. Córdova-Lepe, The multiplicative derivative as a measure of elasticity in economics, TEMAT-Theaeteto Atheniensi Mathematica 2 (2006), no. 3, 7 pages.
[17] F. Córdova-Lepe, R. Del Valle, and K. Vilches, A new approach to the concept of linear-ity. Some elements for a multiplicative linear algebra, Int. J. Comput. Math. 97 (2020), no. 1-2, 109-119. https://doi.org/10.1080/00207160.2018.1437265 · Zbl 1490.15001 · doi:10.1080/00207160.2018.1437265
[18] S. Deshmukh, B.-Y. Chen, and S. H. Alshammari, On rectifying curves in Euclidean 3-space, Turkish J. Math. 42 (2018), no. 2, 609-620. https://doi.org/10.3906/mat-1701-52 · Zbl 1424.53021 · doi:10.3906/mat-1701-52
[19] D. A. Filip and C. Piatecki, A non-newtonian examination of the theory of exogenous economic growth, Math. Aeterna 4 (2014), no. 1-2, 101-117. · Zbl 1307.91053
[20] L. Florack and H. van Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imaging Vision 42 (2012), no. 1, 64-75. https://doi.org/10.1007/s10851-011-0275-1 · Zbl 1255.92014 · doi:10.1007/s10851-011-0275-1
[21] S. G. Georgiev, Multiplicative Differential Geometry, CRC, Boca Raton, FL, 2022. · Zbl 1508.53001
[22] S. G. Georgiev and K. Zennir, Multiplicative Differential Calculus, CRC, Boca Raton, FL, 2023. · Zbl 1502.26004
[23] S. G. Georgiev, K. Zennir, and A. Boukarou, Multiplicative Analytic Geometry, CRC, Boca Raton, FL, 2023. · Zbl 1517.51001
[24] S. Goktas, H. Koyunbakan, and E. Yilmaz, Multiplicative conformable fractional Dirac system, Turkish J. Math. 46 (2022), no. 3, 973-990. https://doi.org/10.55730/1300-0098.3136 · Zbl 1510.34188 · doi:10.55730/1300-0098.3136
[25] S. Goktas, E. Yilmaz, and A. C. Yar, Some spectral properties of multiplicative Hermite equation, Fundam. J. Math. Appl. 5 (2022), no. 1, 32-41. https://doi.org/10.33401/ fujma.973155 · doi:10.33401/fujma.973155
[26] U. Gözütok, H. A. Coban, and Y. Sagiroglu, Frenet frame with respect to conformable de-rivative, Filomat 33 (2019), no. 6, 1541-1550. https://doi.org/10.2298/fil1906541g · Zbl 1499.53004 · doi:10.2298/fil1906541g
[27] M. Grossman, Bigeometric Calculus, Archimedes Found., Rockport, MA, 1983.
[28] M. Grossman and R. Katz, Non-Newtonian Calculus, Lee Press, Pigeon Cove, MA, 1972. · Zbl 0228.26002
[29] T. Gülşen, E. Yilmaz, and S. Goktas, Multiplicative Dirac system, Kuwait J. Sci. 49 (2022), no. 3, 11 pp. https://doi.org/10.48129/kjs.13411 · Zbl 1515.26007 · doi:10.48129/kjs.13411
[30] M. Jianu, S. Achimescu, L. Dȃuş, A. Mihai, O. A. Roman, and Daniel Tudor, Char-acterization of rectifying curves by their involutes and evolutes, Mathematics 9 (2021), no. 23, 3077. https://doi.org/10.3390/math9233077 · doi:10.3390/math9233077
[31] U. Kadak and H. Efe, The construction of Hilbert spaces over the non-Newtonian field, Int. J. Anal. 2014 (2014), Art. ID 746059, 10 pp. https://doi.org/10.1155/2014/ 746059 · doi:10.1155/2014/746059
[32] G. Macsim, A. Mihai, and A. Olteanu, On rectifying-type curves in a Myller configu-ration, Bull. Korean Math. Soc. 56 (2019), no. 2, 383-390. https://doi.org/10.4134/ BKMS.b180279 · Zbl 1425.53005 · doi:10.4134/BKMS.b180279
[33] E. Mısırlı and Y. Gürefe, Multiplicative Adams Bashforth-Moulton methods, Numer. Algorithms 57 (2011), no. 4, 425-439. https://doi.org/10.1007/s11075-010-9437-2 · Zbl 1221.65167 · doi:10.1007/s11075-010-9437-2
[34] M. Mora, F. Cordova-Lepe, and R. Del-Valle, A non-Newtonian gradient for contour detection in images with multiplicative noise, Pattern Recognition Letters 33 (2012), no. 10, 1245-1256. https://doi.org/10.1016/j.patrec.2012.02.012 · doi:10.1016/j.patrec.2012.02.012
[35] A. Özyapıcı and B. Bilgehan, Finite product representation via multiplicative calculus and its applications to exponential signal processing, Numer. Algorithms 71 (2016), no. 2, 475-489. https://doi.org/10.1007/s11075-015-0004-8 · Zbl 1398.94062 · doi:10.1007/s11075-015-0004-8
[36] H. Özyapıcı, İ. Dalcı, and A. Özyapıcı, Integrating accounting and multiplicative calculus: an effective estimation of learning curve, Comp. Math. Org. Th. 23 (2017), 258-270. https://doi.org/10.1007/s10588-016-9225-1 · doi:10.1007/s10588-016-9225-1
[37] A. Özyapıcı, M. Riza, B. Bilgehan, and A. E. Bashirov, On multiplicative and Volterra minimization methods, Numer. Algorithms 67 (2014), no. 3, 623-636. https://doi. org/10.1007/s11075-013-9813-9 · Zbl 1305.65152 · doi:10.1007/s11075-013-9813-9
[38] M. Riza, A. Özyapıcı, and E. Mısırlı, Multiplicative finite difference methods, Quart. Appl. Math. 67 (2009), no. 4, 745-754. https://doi.org/10.1090/S0033-569X-09-01158-2 · Zbl 1187.65083 · doi:10.1090/S0033-569X-09-01158-2
[39] M. Rybaczuk, A. Kȩdzia, and W. Zieliński, The concept of physical and fractal dimen-sion. II. The differential calculus in dimensional spaces, Chaos Solitons Fractals 12 (2001), no. 13, 2537-2552. https://doi.org/10.1016/S0960-0779(00)00231-9 · Zbl 0994.28003 · doi:10.1016/S0960-0779(00)00231-9
[40] D. F. M. Torres, On a non-Newtonian calculus of variations, Axioms 10 (2021), no. 3, 171. https://doi.org/10.3390/axioms10030171 · doi:10.3390/axioms10030171
[41] A. Uzer, Multiplicative type complex calculus as an alternative to the classical calcu-lus, Comput. Math. Appl. 60 (2010), no. 10, 2725-2737. https://doi.org/10.1016/j. camwa.2010.08.089 · Zbl 1207.26003 · doi:10.1016/j.camwa.2010.08.089
[42] V. Volterra and B. Hostinsky, Operations Infinitesimales Lineares, Herman, Paris, 1938. · JFM 64.1112.04
[43] M. Waseem, M. A. Noor, F. A. Shah, and K. I. Noor, An efficient technique to solve nonlinear equations using multiplicative calculus, Turkish J. Math. 42 (2018), no. 2, 679-691. https://doi.org/10.3906/mat-1611-95 · Zbl 1424.65066 · doi:10.3906/mat-1611-95
[44] T. Yajima and H. Nagahama, Geometric structures of fractional dynamical systems in non-Riemannian space: applications to mechanical and electromechanical systems, Ann. Phys. 530 (2018), no. 5, 1700391, 9 pp. https://doi.org/10.1002/andp.201700391 · Zbl 07756864 · doi:10.1002/andp.201700391
[45] T. Yajima, S. Oiwa, and K. Yamasaki, Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas, Fract. Calc. Appl. Anal. 21 (2018), no. 6, 1493-1505. https://doi.org/10.1515/fca-2018-0078 · Zbl 1428.53011 · doi:10.1515/fca-2018-0078
[46] N. Yalçın, The solutions of multiplicative Hermite differential equation and multi-plicative Hermite polynomials, Rend. Circ. Mat. Palermo (2) 70 (2021), no. 1, 9-21. https://doi.org/10.1007/s12215-019-00474-5 · Zbl 1466.34013 · doi:10.1007/s12215-019-00474-5
[47] N. Yalçın and E. Celik, Solution of multiplicative homogeneous linear differential equa-tions with constant exponentials, New Trends Math. Sci. 6 (2018), no. 2, 58-67. https://doi.org/10.20852/ntmsci.2018.270 · doi:10.20852/ntmsci.2018.270
[48] M. Yazıcı and H. Selvitopi, Numerical methods for the multiplicative partial differential equations, Open Math. 15 (2017), no. 1, 1344-1350. https://doi.org/10.1515/math-2017-0113 · Zbl 1422.65196 · doi:10.1515/math-2017-0113
[49] E. Yilmaz, Multiplicative Bessel equation and its spectral properties, Ricerche Mat. (2021). https://doi.org/10.1007/s11587-021-00674-1 · Zbl 07906426 · doi:10.1007/s11587-021-00674-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.