×

Binary \((-1,1)\)-bimodules over semisimple algebras. (Russian. English summary) Zbl 07896847

Summary: It is proved that the irreducible binary \((-1,1)\)-bimodule over simple algebra with a unit is alternative. A criterion for alternativeness (hence, complete reducibility) of unital binary \((-1,1)\)-bimodule over a semisimple finite-dimensional algebra is obtained. It is proved that every unital strictly \((-1,1)\)-bimodule over a finite-dimensional semisimple associative and commutative algebra is associative. The coordinatization theorem is proved for the matrix algebra \(\mathrm{M}_n(\Phi)\) of order \(n\geq 3\) in the class of binary \((-1,1)\)-algebras. Finally, the following examples of indecomposable \((-1,1)\)-bimodules are constructed: the non-unital bimodule over 1-dimensional algebra \(\Phi e\); the unital bimodule over a 2-dimensional composition algebra \(\Phi e_1 \oplus \Phi e_2\); the unital \((-1,1)\)-bimodule over a quadratic extension \(\Phi(\sqrt{\lambda})\) of the ground field; the unital strictly \((-1,1)\)-bimodule over the field of fractionally rational functions of one variable \(\Phi(t)\).

MSC:

17D20 \((\gamma, \delta)\)-rings, including \((1,-1)\)-rings
16D20 Bimodules in associative algebras

References:

[1] S. Eilenberg, “Extensions of general algebras”, Ann. Soc. Polon. Math., 21 (1948), 125-134 · Zbl 0031.34303
[2] R.D. Schafer, “Representations of alternative algebras”, Trans. Am. Math. Soc., 72 (1952), 1-17 · Zbl 0046.03503 · doi:10.1090/S0002-9947-1952-0045101-X
[3] N. Svartholm, “On the algebras of relativistic quantum theories”, Fysiogr. Sällsk. Lund Förh., 12:9 (1942), 94-108 · Zbl 0060.45305
[4] N. Jacobson, “Structure of alternative and Jordan bimodules”, Osaka Math. J., 6 (1954), 1-71 · Zbl 0059.02902
[5] R. Carlsson, “Malcev-Moduln”, J. Reine Angew. Math., 281 (1976), 199-210 · Zbl 0326.17010
[6] E.N. Kuz’min, “Mal”cev algebras and their representations”, Algebra Logic, 7 (1968), 48-69 · Zbl 0204.36104
[7] A.M. Slinko, I.P. Shestakov, “Right representations of algebras”, Algebra Logic, 13 (1975), 312-333 · Zbl 0342.17003 · doi:10.1007/BF01463203
[8] A.N. Grishkov, “Structure and representations of binary-Lie algebras”, Math. USSR, Izv., 17 (1981), 243-269 · Zbl 0468.17007 · doi:10.1070/IM1981v017n02ABEH001334
[9] L. Ikemoto Murakami, I.P. Shestakov, “Irreducible unital right alternative bimodules”, J. Algebra, 246:2 (2001), 897-914 · Zbl 1002.17018 · doi:10.1006/jabr.2001.8990
[10] S.V. Pchelintsev, “Irreducible binary (-1,1)-bimodules over simple finite-dimensional algebras”, Sib. Math. J., 47:5 (2006), 934-939 · Zbl 1150.17025 · doi:10.1007/s11202-006-0104-8
[11] I. Shestakov, M. Trushina, “Irreducible bimodules over alternative algebras and superalgebras”, Trans. Am. Math. Soc., 368:7 (2016), 4657-4684 · Zbl 1397.17006 · doi:10.1090/tran/6475
[12] L.R. Borisova, S.V. Pchelintsev, “On the structure of alternative bimodules over semisimple Artinian algebras”, Russ. Math., 64:8 (2020), 1-7 · Zbl 1475.17050 · doi:10.3103/S1066369X20080010
[13] L.I. Murakami, S.V. Pchelintsev, O.V. Shashkov, “Right alternative unital bimodules over the matrix algebras of order \(\geq 3\)”, Sib. Math. J., 63:4 (2022), 743-757 · Zbl 1498.17051 · doi:10.1134/S0037446622040152
[14] S.V. Pchelintsev, O.V. Shashkov, I.P. Shestakov, “Right alternative bimodules over Cayley algebra and coordinatization theorem”, J. Algebra, 572 (2021), 111-128 · Zbl 1475.17052 · doi:10.1016/j.jalgebra.2020.12.009
[15] K.A. Zhevlakov, A.M. Slin’ko, I.P. Shestakov, A.I. Shirshov, Rings that are nearly associative, Pure and Applied Mathematics, 104, Academic Press, Inc., New York etc., 1982 · Zbl 0487.17001
[16] L.A. Skornyakov, “Right-alternative skew-filds”, Izv. Akad. Nauk SSSR, Ser. Mat., 15:2 (1951), 177-184 · Zbl 0042.03501
[17] E. Kleinfeld, “Right alternative rings”, Proc. Am. Math. Soc., 4 (1953), 939-944 · Zbl 0052.26703 · doi:10.1090/S0002-9939-1953-0059888-X
[18] S.V. Pchelintsev, “On central ideals of finitely generated binary (-1,1)-algebras”, Sb. Math., 193:4 (2002), 585-607 · Zbl 1035.17044 · doi:10.1070/SM2002v193n04ABEH000646
[19] A. Thedy, “Right alternative rings”, J. Algebra, 37:1 (1975), 1-43 · Zbl 0318.17011 · doi:10.1016/0021-8693(75)90086-1
[20] A.A. Albert, “The structure of right alternative algebras”, Ann. Math. (2), 59 (1954), 408-417 · Zbl 0055.26501 · doi:10.2307/1969709
[21] M. Zorn, “Theorie der alternativen Ringe”, Abhandlungen Hamburg, 8 (1930), 123-147 · JFM 56.0140.01 · doi:10.1007/BF02940993
[22] V.G. Skosyrskii, “Right alternative algebras”, Algebra Logic, 23 (1984), 131-136 · Zbl 0572.17013 · doi:10.1007/BF01979706
[23] I.M. Miheev, “Simple right alternative rings”, Algebra Logic, 16 (1978), 456-476 · Zbl 0401.17009 · doi:10.1007/BF01670007
[24] I.R. Hentzel, “The characterization of \((-1,1)\)-rings”, J. Algebra, 30 (1974), 236-258 · Zbl 0284.17001 · doi:10.1016/0021-8693(74)90200-2
[25] E. Kleinfeld, H.F. Smith, “Locally \((-1,1)\)-rings”, Commun. Algebra, 3 (1975), 219-237 · Zbl 0302.17001 · doi:10.1080/00927877508822045
[26] S.V. Pchelintsev, “Defining identities of a variety of right alternative algebras”, Mat. Zametki, 20:2 (1976), 161-176 · Zbl 0341.17006
[27] S.V. Pchelintsev, “Prime alternative algebras that are nearly commutative”, Izv. Math., 68:1 (2004), 181-204 · Zbl 1071.17024 · doi:10.1070/IM2004v068n01ABEH000470
[28] I.R. Hentzel, H.F. Smith, “Simple locally \((-1,1)\) nil rings”, J. Algebra, 101 (1986), 262-272 · Zbl 0588.17022 · doi:10.1016/0021-8693(86)90110-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.