×

A Hörmander-Fock space. (English) Zbl 07893755

Summary: In a recent paper, we used a basic decomposition property of polyanalytic functions of order 2 in one complex variable to characterize solutions of the classical \(\bar{\partial}\)-problem for given analytic and polyanalytic data. Our approach suggested the study of a special reproducing kernel Hilbert space that we call the Hörmander-Fock space that will be further investigated in this paper. The main properties of this space are encoded in a specific moment sequence denoted by \(\eta =(\eta_n)_{n \geq 0}\) leading to a special entire function \(\mathsf{E}(z)\) that is used to express the kernel function of the Hörmander-Fock space. We present also an example of a special function belonging to the class Mittag-Leffler (ML) introduced recently by Alpay et al. and apply a Bochner-Minlos type theorem to this function, thus motivating further connections with the theory of stochastic processes.

MSC:

30H20 Bergman spaces and Fock spaces
44A15 Special integral transforms (Legendre, Hilbert, etc.)
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)

References:

[1] Alpay, D, Colombo, F, Diki, K, et al. Hörmander’s \(L2 \) -method, \( \overline{\partial } \) -problem and polyanalytic function theory in one complex-variable, preprint; 2022.
[2] Hörmander, L.\( L2\) estimates and existence theorems for the \(\overline{\partial }\) operator. Acta Math. 1966;113:89-152. · Zbl 0158.11002
[3] Hörmander, L.Generators for some rings of analytic functions. Bull Am Math Soc. 1967;73(6):943-949. · Zbl 0172.41701
[4] Hörmander, L.Notions of convexity. Boston: Birkhäuser; 2007.
[5] Berenstein, CA, Taylor, BA.A new look at interpolation theory for entire functions of one variable. Adv Math. 1979;33(2):109-143. · Zbl 0432.30028
[6] Hedenmalm, H.On Hörmander’s solution of the \(\overline{\partial } \) -equation. I. Math Z. 2015;281(1-2):349-355. · Zbl 1351.30041
[7] Abreu, LD, Feichtinger, HG. Function spaces of polyanalytic functions. In: Vasil’ev A, editor. Harmonic and complex analysis and its applications: Trends in Mathematics. Cham: Birkhäuser; 2014. p. 1-38. · Zbl 1318.30070
[8] Balk, M.Polyanalytic functions. Berlin: Akademie-Verlag; 1991. · Zbl 0764.30038
[9] Balk, M. Polyanalytic functions and their generalizations. In: Gonchar AA, Havin VP, Nikolski NK, editors. Complex analysis I. Berlin (Heidelberg): Springer; 1997. p. 195-253. · Zbl 0855.00006
[10] Vasilevski, N.On the structure of Bergman and poly-Bergman spaces. Integral Equ Oper Theory. 1999;33(4):471-488. · Zbl 0931.46023
[11] Kolossoff, GV.Sur les problèmes d’élasticité à deux dimensions. CR Acad Sci. 1908;148:1242-1244. · JFM 40.0871.02
[12] Askour, N, Intissar, A, Mouayn, Z.Explicit formulas for reproducing kernels of generalized Bargmann spaces on \(\mathbb{C}^n \). J Math Phys. 2000;41(5):3057-3067. · Zbl 1030.46025
[13] Begehr, H.Orthogonal decompositions of the function space \(L_2(\overline{D}; \mathbb{C}) \). J Reine Angew Math. 2002;549:191-219. · Zbl 0999.30031
[14] Abramowitz, M, Stegun, IA.Handbook of mathematical functions with formulas, graphs, and mathematical tables. Vol. 55. Washington (DC): US Government Printing Office; 1964. · Zbl 0171.38503
[15] Berenstein, CA, Struppa, DC. Complex analysis and convolution equations. In: Several complex variables V. Berlin (Heidelberg): Springer; 1993. p. 1-108. · Zbl 0787.46032
[16] Zwillinger, D, Jeffrey, A, editors. Table of integrals, series, and products. Elsevier; 2007. · Zbl 1208.65001
[17] Szafraniec, FH. The reproducing kernel property and its space: More or less standard examples of applications. In: Alpay D, editor. Operator theory. Basel: Springer; 2015. p. 31-58. · Zbl 1342.46027
[18] Bargmann, V.On a Hilbert space of analytic functions and an associated integral transform. Commun Pure Appl Math. 1961;14:187-214. · Zbl 0107.09102
[19] Alpay, D, Cerejeiras, P, Kaehler, U. Generalized Fock space and moments, arXiv preprint arXiv:2005.08085; 2020.
[20] Alpay, D, Cerejeiras, P, Kähler, U.Generalized white noise analysis and topological algebras. Stochastics. 2022;94(6):926-958. · Zbl 1498.60294
[21] El-Fallah, O, Kellay, K, Mashreghi, J, et al. A primer on the Dirichlet space. Vol. 203. Cambridge: Cambridge University Press; 2014. · Zbl 1304.30002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.