×

Gaussian RBF kernels via Fock spaces: quaternionic and several complex variables settings. (English) Zbl 07886850

Summary: In this paper, we study two extensions of the complex-valued Gaussian radial basis function (RBF) kernel and discuss their connections with Fock spaces in two different settings. First, we introduce the quaternionic Gaussian RBF kernel constructed using the theory of slice hyperholomorphic functions. Then, we consider the case of Gaussian RBF kernels in several complex variables.

MSC:

81-XX Quantum theory
30G35 Functions of hypercomplex variables and generalized variables
30H20 Bergman spaces and Fock spaces
44A15 Special integral transforms (Legendre, Hilbert, etc.)
46E20 Hilbert spaces of continuous, differentiable or analytic functions

References:

[1] Alpay, D.; Colombo, F.; Diki, K.; Sabadini, I., An approach to the Gaussian RBF kernels via Fock spaces, J. Math. Phys., 63, 11, 2022 · Zbl 1508.30099 · doi:10.1063/5.0060342
[2] Alpay, D., Colombo, F., Sabadini, I.: Slice hyperholomorphic Schur analysis. Operator Theory: Advances and Applications, vol. 256. Birkhäuser/Springer, Cham, xii+362 pp (2016) · Zbl 1366.30001
[3] Alpay, D., Colombo, F., Sabadini, I.: Quaternionic de Branges spaces and characteristic operator function, Springer Briefs in Mathematics. Springer, Cham (2020/2021) · Zbl 1475.47001
[4] Alpay, D., Colombo, F., Sabadini, I., Salomon, G.: The Fock space in the slice hyperholomorphic Setting. In: Hypercomplex Analysis: New Perspectives and Applications. Trends Math., pp. 43-59 (2014) · Zbl 1314.30092
[5] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, Pitman Res. Notes in Math., vol. 76 (1982) · Zbl 0529.30001
[6] Colombo, F.; Deniz-Gonzales, D.; Pinton, S., Non commutative fractional Fourier law in bounded and unbounded domains, Complex Anal. Oper. Theory, 15, 1-27, 2021 · Zbl 07422101 · doi:10.1007/s11785-021-01159-7
[7] Colombo, F., Gantner, J.: Quaternionic closed operators, fractional powers and fractional diffusion processes, Operator Theory: Advances and Applications, vol. 274. Birkhäuser/Springer, Cham, viii+322 pp (2019) · Zbl 1458.47001
[8] Colombo, F., Gantner, J., Kimsey, P.: Spectral theory on the S-spectrum for quaternionic operators. In: Operator Theory: Advances and Applications, vol. 270. Birkhauser/Springer, Cham, p. ix+356 (2018) · Zbl 1422.47002
[9] Colombo, F.; Peloso, M.; Pinton, S., The structure of the fractional powers of the noncommutative Fourier law, Math. Methods Appl. Sci., 42, 6259-6276, 2019 · Zbl 1447.47062 · doi:10.1002/mma.5719
[10] Colombo, F.; Sabadini, I.; Struppa, DC, Noncommutative Functional Calculus, Progress in Mathematics, 2011, Basel: Birkhäuser/Springer Basel AG, Basel · Zbl 1228.47001 · doi:10.1007/978-3-0348-0110-2
[11] Colombo, F., Sabadini I. I., Struppa, D.C.: Entire Slice Regular Functions, Springer Briefs in Mathematics. Springer, Cham (2016) · Zbl 1372.30001
[12] Colombo, F., Sabadini, I., Struppa, D.C.: Michele Sce’s Works in Hypercomplex Analysis. A Translation with Commentaries. Birkhäuser/Springer Basel AG, Basel (2020) · Zbl 1448.30001
[13] De Martino, A.; Diki, K., On the quaternionic short-time Fourier and Segal-Bargmann transforms, Mediterr. J. Math., 18, 110, 2021 · Zbl 1471.44005 · doi:10.1007/s00009-021-01745-1
[14] De Martino, A.; Diki, K., On the polyanalytic short-time Fourier transform in the quaternionic setting, Commun. Pure Appl. Anal, 21, 11, 3629-3665, 2022 · Zbl 1522.44004 · doi:10.3934/cpaa.2022117
[15] Diki, K.; Ghanmi, A., A quaternionic analogue for the Segal-Bargamann transform, Complex Anal. Oper. Theory, 11, 457-473, 2017 · Zbl 1364.44002 · doi:10.1007/s11785-016-0609-5
[16] Fueter, R., Die Funktionentheorie der Differentialgleichungen \(\Delta u=0\) und \(\Delta \Delta u=0\) mit vier reellen Variablen, Comment. Math. Helv., 7, 1, 307-330, 1934 · Zbl 0012.01704 · doi:10.1007/BF01292723
[17] Gazeau, JP, Coherent States in Quantum Physics, 2009, Weinheim: WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim · doi:10.1002/9783527628285
[18] Gentili, G.; Stoppato, C.; Struppa, DC, Regular Functions of a Quaternionic Variable. Springer Monographs, 2013, Berlin: Springer, Berlin · Zbl 1269.30001 · doi:10.1007/978-3-642-33871-7
[19] Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Computational Learning Theory: 14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT 2001 Amsterdam, July 16-19, 2001 Proceedings 14, pp. 416-426. Springer, Berlin (2001) · Zbl 0992.68088
[20] Steinwart, I.; Don, H.; Clint, S., An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels, IEEE Trans. Inf. Theory, 52, 10, 4635-4643, 2006 · Zbl 1320.68148 · doi:10.1109/TIT.2006.881713
[21] Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York, 978-0-387-77242-4 (2008) · Zbl 1203.68171
[22] Vert, JP; Tsuda, K.; Schölkopf, B., A primer on kernel methods, Kernel Methods Comput. Biol., 47, 35-70, 2004 · doi:10.7551/mitpress/4057.003.0004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.