×

Permutation group entropy: a new route to complexity for real-valued processes. (English) Zbl 07879605


MSC:

37-XX Dynamical systems and ergodic theory
34-XX Ordinary differential equations

Software:

DLMF

References:

[1] Amigó, J. M.; Balogh, S. G.; Hernández, S., A brief review of generalized entropies, Entropy, 20, 813, 2018 · doi:10.3390/e20110813
[2] Khinchin, A. I., Mathematical Foundations of Information Theory, 1957, Dover: Dover, New York · Zbl 0088.10404
[3] Shannon, C. E., A mathematical theory of communication, Bell Syst. Tech. J., 27, 379-423, 1948 · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[4] Hanel, R.; Thurner, S., A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions, Europhys. Lett., 93, 20006, 2011 · doi:10.1209/0295-5075/93/20006
[5] Tsallis, C., Introduction to Nonextensive Statistical Mechanics-Approaching a Complex World, 2009, Springer: Springer, Berlin · Zbl 1172.82004
[6] Rényi, A., “On measures of information and entropy,” in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, Vol. 1 (University of California Press, Berkeley, 1960), pp. 547-561.
[7] Amigó, J. M.; Keller, K.; Unakafova, V., On entropy, entropy-like quantities, and applications, Discrete Contin. Dyn. Syst. B, 20, 3301-3343, 2015 · Zbl 1359.37012 · doi:10.3934/dcdsb.2015.20.3301
[8] Csiszár, I., Axiomatic characterization of information measures, Entropy, 10, 261-273, 2008 · Zbl 1179.94043 · doi:10.3390/e10030261
[9] Ilic, V.; Stankovic, M., Generalized Shannon-Khinchin axioms and uniqueness theorem for pseudo-additive entropies, Physica A, 411, 138-145, 2014 · Zbl 1395.94211 · doi:10.1016/j.physa.2014.05.009
[10] Jizba, P.; Korbel, J., Maximum entropy principle in statistical inference: Case for non-Shannonian entropies, Phys. Rev. Lett., 122, 120601, 2019 · doi:10.1103/PhysRevLett.122.120601
[11] Tsallis, C., Entropy, Encyclopedia, 2, 264-300, 2022 · doi:10.3390/encyclopedia2010018
[12] Hazewinkel, M., Formal Groups and Applications, 1978, Academic Press: Academic Press, New York · Zbl 0454.14020
[13] Serre, J. P., Lie Algebras and Lie Groups, Lecture Notes in Mathematics 1500 (Springer-Verlag, 1992). · Zbl 0742.17008
[14] Tempesta, P., Group entropies, correlation laws and zeta functions, Phys. Rev. E, 84, 021121, 2011 · doi:10.1103/PhysRevE.84.021121
[15] Tempesta, P., Beyond the Shannon-Khinchin formulation: The composability axiom and the universal group entropy, Ann. Phys., 365, 180-197, 2016 · Zbl 1342.82005 · doi:10.1016/j.aop.2015.08.013
[16] Tempesta, P., Formal groups and \(Z\)-entropies, Proc. R. Soc. A, 472, 20160143, 2016 · Zbl 1371.94581 · doi:10.1098/rspa.2016.0143
[17] Amigó, J. M., Permutation Complexity in Dynamical Systems: Ordinal Patterns, Permutation Entropy and All That, 2010, Springer Verlag: Springer Verlag, Berlin · Zbl 1197.37001
[18] Amigó, J. M.; Dale, R.; Tempesta, P., A generalized permutation entropy for noisy dynamics and random processes, Chaos, 31, 013115, 2021 · Zbl 1458.62193 · doi:10.1063/5.0023419
[19] Amigó, J. M.; Dale, R.; Tempesta, P., Complexity-based permutation entropies: From deterministic time series to white noise, Commun. Nonlinear Sci. Numer. Simul., 105, 106077, 2022 · Zbl 1479.94085 · doi:10.1016/j.cnsns.2021.106077
[20] Gomez, I. S.; Portesi, M.; Borges, E. P., Universality classes for the fisher metric derived from relative group entropy, Physica A, 547, 123827, 2020 · Zbl 07530146 · doi:10.1016/j.physa.2019.123827
[21] Hirica, I. E.; Pripoae, C. L.; Pripoae, G. T.; Preda, V., Weighted relative group entropies and associated fisher metrics, Entropy, 24, 120, 2022 · doi:10.3390/e24010120
[22] Jensen, H. J.; Pazuki, R. H.; Pruessner, G.; Tempesta, P., Statistical mechanics of exploding phase spaces: Ontic open systems, J. Phys. A: Math. Theor., 51, 375002, 2018 · Zbl 1406.82018 · doi:10.1088/1751-8121/aad57b
[23] Jensen, H. J.; Tempesta, P., Group entropies: From phase space geometry to entropy functionals via group theory, Entropy, 20, 804, 2018 · doi:10.3390/e20100804
[24] Rodríguez, M. A.; Romaniega, A.; Tempesta, P., A new class of entropic information measures, formal group theory and information geometry, Proc. R. Soc. A, 475, 20180633, 2019 · Zbl 1472.94040 · doi:10.1098/rspa.2018.0633
[25] Tempesta, P., Multivariate group entropies, super-exponentially growing complex systems, and functional equations, Chaos, 30, 123119, 2020 · Zbl 1458.94179 · doi:10.1063/5.0009846
[26] Tempesta, P.; Jensen, H. J., Universality classes and information-theoretic measures of complexity via group entropies, Nat. Sci. Rep., 10, 5952, 2020 · doi:10.1038/s41598-020-60188-y
[27] Cover, T. M.; Thomas, J. A., Elements of Information Theory, 2006, John Wiley & Sons: John Wiley & Sons, New York · Zbl 1140.94001
[28] Liu, Z. K., Theory of cross phenomena and their coefficients beyond Onsager theorem, Mater. Res. Lett., 10, 393-439, 2022 · doi:10.1080/21663831.2022.2054668
[29] Enciso, A.; Tempesta, P., Uniqueness and characterization theorems for generalized entropies, J. Stat. Mech. Theory Exp., 2017, 123101 · Zbl 1456.94032 · doi:10.1088/1742-5468/aa967f
[30] NIST Handbook of Mathematical Functions, edited by F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge University Press, Cambridge, 2010). · Zbl 1198.00002
[31] Mittal, D., On some functional equations concerning entropy, directed divergence and inaccuracy, Metrika, 22, 35-45, 1975 · Zbl 0305.94030 · doi:10.1007/BF01899712
[32] Sharma, B. D.; Taneja, I. J., Entropy of type \((\alpha,\beta)\) and other generalized measures in information theory, Metrika, 22, 205-215, 1975 · Zbl 0328.94012 · doi:10.1007/BF01899728
[33] Kaniadakis, G., Statistical mechanics in the context of special relativity, Phys. Rev. E, 66, 056125, 2002 · doi:10.1103/PhysRevE.66.056125
[34] Amari, S. I.; Nagaoka, H., Methods of Information Geometry, 2000, American Mathematical Society · Zbl 0960.62005
[35] Amari, S. I., Information Geometry and Its Applications, Applied Mathematical Sciences (Springer, Japan, 2016). · Zbl 1350.94001
[36] Vidal, G.; Werner, R. F., Computable measures of entanglement, Phys. Rev. A, 65, 132314, 2002 · doi:10.1103/PhysRevA.65.032314
[37] Carrasco, J. A.; Marmo, G.; Tempesta, P., New computable entanglement monotones from formal group theory, Quantum Inf. Process., 20, 325, 2021 · Zbl 1509.81149 · doi:10.1007/s11128-021-03249-z
[38] Amigó, J. M.; Keller, K.; Kurths, J., Recent progress in symbolic dynamics and permutation complexity, Eur. Phys. J. Spec. Top., 222, 241-247, 2013 · doi:10.1140/epjst/e2013-01839-6
[39] Amigó, J. M.; Keller, K.; Unakafova, V., Ordinal symbolic analysis and its applications to biomedical recordings, Philos. Trans. R. Soc. A, 373, 20140091, 2015 · Zbl 1353.37022 · doi:10.1098/rsta.2014.0091
[40] Zanin, M.; Zunino, L.; Rosso, O. A.; Papo, D., Permutation entropy and its main biomedical and econophysics applications: A review, Entropy, 14, 1553-1577, 2012 · Zbl 1314.94033 · doi:10.3390/e14081553
[41] Bandt, C., Small order patterns in big time series: A practical guide, Entropy, 21, 613, 2019 · doi:10.3390/e21060613
[42] Weiß, C. H.; Ruiz Marín, M.; Keller, K.; Matilla-García, M., Nonparametric analysis of serial dependence in time series using ordinal patterns, Comput. Stat. Data Anal., 168, 107381, 2022 · Zbl 07476363 · doi:10.1016/j.csda.2021.107381
[43] Amigó, J. M.; Monetti, R.; Aschenbrenner, T.; Bunk, W., Transcripts: An algebraic approach to coupled time series, Chaos, 22, 013105, 2012 · Zbl 1331.37118 · doi:10.1063/1.3673238
[44] Haruna, T., Partially ordered permutation complexity of coupled time series, Physica D, 388, 40-44, 2019 · Zbl 1448.94114 · doi:10.1016/j.physd.2018.09.002
[45] Eckmann, J. P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617-656, 1985 · Zbl 0989.37516 · doi:10.1103/RevModPhys.57.617
[46] Bandt, C.; Pompe, B., Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88, 174102, 2002 · doi:10.1103/PhysRevLett.88.174102
[47] Mandelbrot, B. B.; Van Ness, J. W., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 422-437, 1968 · Zbl 0179.47801 · doi:10.1137/1010093
[48] Singer, D., Stable orbits and bifurcations of maps of the interval, SIAM J. Appl. Math., 35, 260-267, 1978 · Zbl 0391.58014 · doi:10.1137/0135020
[49] Sarkovskii, A. N., Coexistence of cycles of a continuous map of a line into itself, Ukr. Math. J., 16, 61-71, 1964 · Zbl 0890.58012 · doi:10.1142/S0218127495000934
[50] Li, T. Y.; Yorke, J. A., Period three implies chaos, Am. Math. Mon., 82, 985-992, 1975 · Zbl 0351.92021 · doi:10.1080/00029890.1975.11994008
[51] Bandt, C.; Keller, G.; Pompe, B., Entropy of interval maps via permutations, Nonlinearity, 15, 1595-1602, 2002 · Zbl 1026.37027 · doi:10.1088/0951-7715/15/5/312
[52] Walters, P., An Introduction to Ergodic Theory, 2000, Springer Verlag: Springer Verlag, New York · Zbl 0958.28011
[53] Amigó, J. M.; Keller, K., Permutation entropy: One concept, two approaches, Eur. Phys. J. Spec. Top., 222, 263-273, 2013 · doi:10.1140/epjst/e2013-01840-1
[54] Amigó, J. M.; Kennel, M. B., Forbidden ordinal patterns in higher dimensional dynamics, Physica D, 237, 2893-2899, 2008 · Zbl 1153.37309 · doi:10.1016/j.physd.2008.05.003
[55] Apostol, T., Mathematical Analysis, 1974, Addison Wesley Longman: Addison Wesley Longman, Menlo Park, CA · Zbl 0309.26002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.