×

The Hartley-Bessel function: product formula and convolution structure. (English) Zbl 07874602

Summary: This paper explores a one-parameter extension of the Hartley kernel expressed as a real combination of two Bessel functions, termed the Hartley-Bessel function. The key feature of the Hartley-Bessel function is derived through a limit transition from the \(-1\) little Jacobi polynomials. The Hartley-Bessel function emerges as an eigenfunction of a first-order difference-differential operator and possesses a Sonin integral-type representation. Our main contribution lies in investigating anovel product formula for this function, which subsequently facilitates the development of innovative generalized translation and convolution structures on the real line. The obtained product formula is expressed as an integral in terms of this function with an explicit non-positive and uniformly bounded measure. Consequently, a non-positivity-preserving convolution structure is established.

MSC:

44A35 Convolution as an integral transform
44A20 Integral transforms of special functions
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
Full Text: DOI

References:

[1] Bouzeffour, F.; Garayev, M., The Hartley transform via SUSY quantum mechanics, Mem. Differ. Equ. Math. Phys., 83, 31-41, 2021 · Zbl 1490.81082
[2] Bracewell, RN, The Hartley Transform, 1986, New York: Oxford University, New York · Zbl 0608.42001
[3] Hartley, RVL, A more symmetrical Fourier analysis applied to transmission problems, Proc. IRE, 30, 144-150, 1942 · Zbl 0061.28801 · doi:10.1109/JRPROC.1942.234333
[4] Tuan, V-K., Yakubovich, S-B.: A criterion for the unitarity of a two-sided integral transformation (in Russian). Ukr. Mat. Zh. 44(5), 697-699 (translation in Ukr. Math. J. 44(5), 630-632 (1992) · Zbl 0782.44002
[5] Hai, N-T; Yakubovich, S.; Wimp, J., Multidimensional Watson transforms, Int. J. Math. Stat. Sci., 1, 1, 105-119, 1992 · Zbl 0795.44001
[6] Yakubovich, S., On the half-Hartley transform, its iteration and compositions with Fourier transforms, J. Integral Equ. Appl., 26, 4, 581-608, 2014 · Zbl 1307.44008 · doi:10.1216/JIE-2014-26-4-581
[7] Yakubovich, S., The Plancherel, Titchmarsh and convolution theorems for the half-Hartley transform, Integral Transforms Spec. Funct., 25, 10, 836-848, 2014 · Zbl 1306.44006 · doi:10.1080/10652469.2014.928706
[8] Tsujimoto, S.; Vinet, L.; Zhedanov, A., Dunkl shift operators and Bannai-Ito polynomials, Adv. Math., 229, 2123-2158, 2012 · Zbl 1248.33022 · doi:10.1016/j.aim.2011.12.020
[9] Bouzeffour, F., The generalized Hartley transform, Integral Transform. Spec. Funct., 25, 3, 230-239, 2014 · Zbl 1290.33022 · doi:10.1080/10652469.2013.838760
[10] Bouzeffour, F.; Jedidi, W.; Chorfi, N., Jackson’s \((-1)\)-Bessel functions with the Askey-Wilson algebra setting, Adv. Differ. Equ., 2015, 268, 2015 · Zbl 1422.33005 · doi:10.1186/s13662-015-0612-6
[11] Bloom, WR; Heyer, H., Harmonic Analysis of Probability Mesasures on Hypergroups, 1995, Berlin-New York: De Gruyter, Berlin-New York · Zbl 0828.43005 · doi:10.1515/9783110877595
[12] Rösler, M.: Bessel-type signed hypergroups on \(R\). In: Heyer, H., Mukherjea, A. (eds.) Probability Measures on Groups and Related Structures XI, Proc. Oberwolfach 1994. World Scientific, Singapore, pp. 292-304. MR 97j:43004 (1995) · Zbl 0908.43005
[13] Ben Saïd, S.; Kobayashi, T.; Orsted, B., Generalized Fourier transforms \(F_{\kappa, a}\), C R Math Acad Sci Paris., 347, 19-20, 1119-1124, 2009 · Zbl 1176.43003 · doi:10.1016/j.crma.2009.07.015
[14] Boubatra, MA; Negzaoui, S.; Sifi, M., A new product formula involving Bessel functions, Integral Transform. Spec. Funct., 33, 3, 247-263, 2022 · Zbl 1515.33008 · doi:10.1080/10652469.2021.1926454
[15] Amri, B., Product formula for the one-dimensional \((k, a)\)-generalized Fourier kernel, Integral Transform. Spec. Funct., 34, 11, 849-860, 2023 · Zbl 1539.43002 · doi:10.1080/10652469.2023.2221774
[16] Watson, GN, A Treatise on the Theory of Bessel Functions, 1990, Cambridge: Cambridge University Press, Cambridge
[17] Vinet, L.; Zhedanov, A., A missing family of classical orthogonal polynomials, J. Phys. A: Math. Theor., 44, 085201, 2011 · Zbl 1222.33011 · doi:10.1088/1751-8113/44/8/085201
[18] Zwillinger, D., Table of Integrals, Series, and Products, 2014, Cambridge: Academic Press, Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.