×

Idempotent set-theoretical solutions of the pentagon equation. (English) Zbl 07873922

Summary: A set-theoretical solution of the pentagon equation on a non-empty set \(X\) is a function \(s:X\times X\rightarrow X\times X\) satisfying the relation \(s_{23}\, s_{13}\, s_{12}=s_{12}\, s_{23}\), with \(s_{12}=s\times \,{{\,\mathrm{id}\,}}_X, s_{23}={{\,\mathrm{id}\,}}_X \times\, s\) and \(s_{13}=({{\,\text{id}\,}}_X \times\, \tau) s_{12}({{\,\text{id}\,}}_X \times \,\tau)\), where \(\tau :X\times X\rightarrow X\times X\) is the flip map given by \(\tau (x,y)=(y,x)\), for all \(x,y\in X\). Writing a solution as \(s(x,y)=(xy,\theta_x (y))\), where \(\theta_x :X\rightarrow X\) is a map, for every \(x\in X\), one has that \(X\) is a semigroup. In this paper, we study idempotent solutions, i.e., \(s^2 =s\), by showing that the idempotents of \(X\) have a crucial role in such an investigation. In particular, we describe all such solutions on monoids having central idempotents. Moreover, we focus on idempotent solutions defined on monoids for which the map \(\theta_1\) is a monoid homomorphism.

MSC:

16T25 Yang-Baxter equations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
20M99 Semigroups

References:

[1] Baaj, S., Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres. Ann. Sci. Éc. Norm. Sup. 26(4), 425-488 (1993). http://eudml.org/doc/82346 · Zbl 0804.46078
[2] Baaj, S.; Skandalis, G., Transformations pentagonales, C. R. Acad. Sci. Paris Sér. I Math., 327, 7, 623-628, 1998 · Zbl 1040.37500 · doi:10.1016/S0764-4442(99)80090-1
[3] Catino, F.; Mazzotta, M.; Miccoli, MM, Set-theoretical solutions of the pentagon equation on groups, Commun. Algebra, 48, 1, 83-92, 2020 · Zbl 1447.16034 · doi:10.1080/00927872.2019.1632331
[4] Catino, F.; Mazzotta, M.; Stefanelli, P., Set-theoretical solutions of the Yang-Baxter and pentagon equations on semigroups, Semigroup Forum, 100, 3, 1-26, 2020 · Zbl 1508.20081 · doi:10.1007/s00233-020-10100-x
[5] Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. I, Mathematical Surveys, No. 7. American Mathematical Society, Providence (1961) · Zbl 0111.03403
[6] Colazzo, I.; Jespers, E.; Kubat, Ł., Set-theoretic solutions of the pentagon equation, Commun. Math. Phys., 380, 2, 1003-1024, 2020 · Zbl 1482.16059 · doi:10.1007/s00220-020-03862-6
[7] Colazzo, I., Jespers, E., Kubat, Ł., Van Antwerpen, A., Verwimp, C.: Finite idempotent set-theoretic solutions of the Yang-Baxter equation (2022). arxiv:2212.07361 · Zbl 1511.16030
[8] Dimakis, A., Müller-Hoissen, F.: Simplex and polygon equations. SIGMA Symmetry Integrability Geom. Methods Appl. 11 Paper 042, 49 (2015). doi:10.3842/SIGMA.2015.042 · Zbl 1338.06001
[9] Drinfel’d, V.G.: On some unsolved problems in quantum group theory. In: Quantum Groups (Leningrad, 1990), Lecture Notes in Mathematics, vol. 1510. Springer, Berlin, pp. 1-8 (1992). doi:10.1007/BFb0101175 · Zbl 0765.17014
[10] Howie, J.M.: Fundamentals of semigroup theory, London Mathematical Society Monographs, vol. 12. New Series, The Clarendon Press, Oxford University Press, New York, Oxford Science Publications (1995) · Zbl 0835.20077
[11] Jiang, L.; Liu, M., On set-theoretical solution of the pentagon equation, Adv. Math. (China), 34, 3, 331-337, 2005 · Zbl 1482.17034
[12] Kashaev, R.: Fully noncommutative discrete Liouville equation. In: Infinite Analysis 2010-Developments in Quantum Integrable Systems, RIMS Kôkyûroku Bessatsu, B28, Res. Inst. Math. Sci. (RIMS), Kyoto, pp. 89-98 (2011) · Zbl 1260.81075
[13] Kashaev, RM; Sergeev, SM, On pentagon, ten-term, and tetrahedron relations, Commun. Math. Phys., 195, 2, 309-319, 1998 · Zbl 0937.16045 · doi:10.1007/s002200050391
[14] Kawamura, K., Pentagon equation arising from state equations of a C*-bialgebra, Lett. Math. Phys., 93, 3, 229-241, 2010 · Zbl 1206.46048 · doi:10.1007/s11005-010-0413-5
[15] Kunze, M., Zappa products, Acta Math. Hungar., 41, 3-4, 225-239, 1983 · Zbl 0538.20033 · doi:10.1007/BF01961311
[16] Lebed, V., Cohomology of idempotent braidings with applications to factorizable monoids, Int. J. Algebra Comput., 27, 4, 421-454, 2017 · Zbl 1380.16035 · doi:10.1142/S0218196717500229
[17] Mazzotta, M.: Conference talk “Recent developments of the set-theoretical solutions to the pentagon equation’, First UMI meeting of PhD students, Padova, 26-27 May (2022). https://www.100umi800unipd.it/?page_id=362#parallel-sessions
[18] Mazzotta, M.: Recent developments of the set-theoretical solutions to the pentagon equation, Ph.D. thesis Università del Salento (2020). doi:10.13140/RG.2.2.16416.40969 · Zbl 1447.16034
[19] Militaru, G., The Hopf modules category and the Hopf equation, Commun. Algebra, 26, 10, 3071-3097, 1998 · Zbl 0907.16018 · doi:10.1080/00927879808826329
[20] Monzo, RAR, Pre-compatible almost endomorphisms and semigroups whose cube is a band, Semigroup Forum, 67, 3, 355-372, 2003 · Zbl 1059.20055 · doi:10.1007/s00233-001-0004-y
[21] Petrich, M.: Inverse semigroups, Pure and Applied Mathematics (New York). Wiley, New York (1984) · Zbl 0546.20053
[22] Rhodes, J.; Tilson, B., The kernel of monoid morphisms, J. Pure Appl. Algebra, 62, 3, 227-268, 1989 · Zbl 0698.20056 · doi:10.1016/0022-4049(89)90137-0
[23] Stanovský, D.; Vojtěchovský, P., Idempotent solutions of the Yang-Baxter equation and twisted group division, Fundam. Math., 255, 1, 51-68, 2021 · Zbl 1486.16041 · doi:10.4064/fm872-2-2021
[24] Woronowicz, SL, From multiplicative unitaries to quantum groups, Int. J. Math., 7, 1, 129-149, 1996 · Zbl 0876.46044 · doi:10.1142/S0129167X96000086
[25] Zakrzewski, S., Poisson Lie groups and pentagonal transformations, Lett. Math. Phys., 24, 1, 13-19, 1992 · Zbl 0790.58020 · doi:10.1007/BF00429998
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.