×

Unboundedness phenomenon in a model of urban crime. (English) Zbl 07864534

Summary: We show that spatial patterns (“hotspots”) may form in the crime model \[ \begin{cases} u_t=\frac{1}{\varepsilon}\Delta u-\frac{\chi}{\varepsilon}\nabla \cdot\left(\frac{u}{v}\nabla v\right)-\varepsilon uv, \\ v_t=\Delta v-v+uv, \end{cases} \] which we consider in \(\Omega=B_R(0)\subset\mathbb{R}^n\), \(R>0\), \(n\geq 3\) with \(\varepsilon>0\), \(\chi>0\) and initial data \(u_0\), \(v_0\) with sufficiently large initial mass \(m:= \int_{\Omega}u_0\). More precisely, for each \(T>0\) and fixed \(\Omega,\chi\) and (large) \(m\), we construct initial data \(v_0\) exhibiting the following unboundedness phenomenon: Given any \(M>0\), we can find \(\varepsilon>0\) such that the first component of the associated maximal solution becomes larger than \(M\) at some point in \(\Omega\) before the time \(T\). Since the \(L^1\) norm of \(u\) is decreasing, this implies that some heterogeneous structure must form.
We do this by first constructing classical solutions to the nonlocal scalar problem \[ w_t=\Delta w+m\bigg(\int_{\Omega}w^\chi\bigg)^{-1} w^{\chi+1}, \] from the solutions to the crime model by taking the limit \(\varepsilon\searrow 0\) under the assumption that the unboundedness phenomenon explicitly does not occur on some interval \((0,T)\). We then construct initial data for this scalar problem leading to blow-up before time \(T\). As solutions to the scalar problem are unique, this proves our central result by contradiction.

MSC:

35B36 Pattern formations in context of PDEs
35B44 Blow-up in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
91D10 Models of societies, social and urban evolution
92C17 Cell movement (chemotaxis, etc.)

References:

[1] Ahn, J., Kang, K. and Lee, J., Global well-posedness of logarithmic Keller-Segel type systems, J. Differ. Equ.287 (2021) 185-211. · Zbl 1464.35348
[2] Bellomo, N., Bellouquid, A., Tao, Y. and Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci.25(9) (2015) 1663-1763. · Zbl 1326.35397
[3] Berestycki, H., Wei, J. and Winter, M., Existence of symmetric and asymmetric spikes for a crime hotspot model, SIAM J. Math. Anal.46(1) (2014) 691-719. · Zbl 1347.34035
[4] Cantrell, R. S., Cosner, C. and Manásevich, R., Global bifurcation of solutions for crime modeling equations, SIAM J. Math. Anal.44(3) (2012) 1340-1358. · Zbl 1248.35212
[5] Cohen, L. E. and Felson, M., Social change and crime rate trends: a routine activity approach, Am. Social. Rev.44(4) (1979) 588.
[6] Felson, M., Routine activities and crime prevention in the developing metropolis, Criminology25(4) (1987) 911-932.
[7] Freitag, M., Global solutions to a higher-dimensional system related to crime modeling: Global solutions to a higher-dimensional system related to crime modeling, Math. Methods Appl. Sci.41(16) (2018) 6326-6335. · Zbl 1401.35203
[8] Friedman, A., Partial Differential Equations (Holt, Rinehart and Winston, Inc., New York, Montreal, London, 1969). · Zbl 0224.35002
[9] Friedman, A. and McLeod, B., Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J.34(2) (1985) 425. · Zbl 0576.35068
[10] Fujie, K. and Senba, T., Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity, Discrete Contin. Dyn. Syst. - Ser. B21(1) (2015) 81-102. · Zbl 1330.35051
[11] Heihoff, F., Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term, Z. Für Angew. Math. Phys.71(3) (2020) 80. · Zbl 1434.35246
[12] Herrero, M. A. and Velázquez, J. J. L., A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci.24(4) (1998) 633-683. · Zbl 0904.35037
[13] Hu, B. and Yin, H.-M., Semilinear parabolic equations with prescribed energy, Rend. Circ. Mat. Palermo44(3) (1995) 479-505. · Zbl 0856.35063
[14] Jäger, W. and Luckhaus, S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Am. Math. Soc.329(2) (1992) 819-824. · Zbl 0746.35002
[15] Johnson, S. D., Bowers, K. and Hirschfield, A., New insights into the spatial and temporal distribution of repeat victimization, British J. Criminol.37(2) (1997) 224-241.
[16] Keller, E. F. and Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol.26(3) (1970) 399-415. · Zbl 1170.92306
[17] Ladyženskaja, O. A., Solonnikov, V. A. and Ural’ceva, N. N., Linear and Quasi-Linear Equations of Parabolic Type, Vol. 23 (American Mathematical Society, 1988).
[18] Lankeit, J., Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. - Ser. B20(5) (2015) 1499-1527. · Zbl 1337.35160
[19] Lankeit, J., A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci.39(3) (2016) 394-404. · Zbl 1333.35100
[20] Lankeit, J. and Winkler, M., A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, Nonlinear Differ. Equ. Appl.24(4) (2017) 49. · Zbl 1373.35166
[21] Lankeit, J. and Winkler, M., Facing low regularity in chemotaxis systems, Jahresber. Dtsch. Math.-Ver.122 (2019) 35-64. · Zbl 1436.92004
[22] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, (Birkhäuser/Springer Basel AG, Basel, 1995). · Zbl 0816.35001
[23] N. Mizoguchi and M. Winkler, Blow-up in the two-Dimensional Parabolic Keller-Segel System, preprint.
[24] Nagai, T., Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl.5(2) (1995) 581-601. · Zbl 0843.92007
[25] Nagai, T. and Senba, T., Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl.8(1) (1998) 145-156. · Zbl 0902.35010
[26] Nagai, T., Senba, T. and Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj40 (1997) 411-433. · Zbl 0901.35104
[27] Osaki, K. and Yagi, A., Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvac.44(3) (2001) 441-469. · Zbl 1145.37337
[28] Porzio, M. M. and Vespri, V., Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ.103(1) (1993) 146-178. · Zbl 0796.35089
[29] Quittner, P. and Souplet, P., Superlinear Parabolic Problems, 2nd edn., (Basler Lehrbücher. Birkhäuser, Cham, Switzerland, 2019). · Zbl 1423.35004
[30] Rodríguez, N. and Winkler, M., Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation, Math. Models Methods Appl. Sci.30(11) (2020) 2105-2137. · Zbl 1451.35226
[31] Rodríguez, N. and Winkler, M., On the global existence and qualitative behaviour of one-dimensional solutions to a model for urban crime, inEuropean J. Appl. Math.33(5) (2022) 919-959. · Zbl 1503.35234
[32] Short, M. B., D’orsogna, M. R., Brantingha, P. J. and Tita, G. E., Measuring and modeling repeat and near-repeat burglary effects, J. Quant. Criminol.25(3) (2009) 325-339.
[33] Short, M. B., D’orsogna, M. R., Pasour, V. B., Tita, G. E., Brantingham, P. J., Bertozzi, A. L. and Chayes, L. B., A statistical model of criminal behavior, Math. Models Methods Appl. Sci.18(1) (2008) 1249-1267. · Zbl 1180.35530
[34] Stinner, C. and Winkler, M., Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal.: Real World Appl.12(6) (2011) 3727-3740. · Zbl 1268.35072
[35] Tao, Y., Wang, L. and Wang, Z.-A., Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst.- Ser. B18(3) (2013) 821-845. · Zbl 1272.35040
[36] Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis (North-Holland Publishing, Amsterdam, New York, Oxford, 1977). · Zbl 0383.35057
[37] Tse, W. H. and Ward, M. J., Hotspot formation and dynamics for a continuum model of urban crime, Eur. J. Appl. Math.27(3) (2016) 583-624. · Zbl 1408.91169
[38] Wilson, J. Q. and Kelling, G. L., Broken windows, Atlan. Mon.249(3) (1982) 29-38.
[39] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ.248(12) (2010) 2889-2905. · Zbl 1190.92004
[40] Winkler, M., Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci.34(2) (2011) 176-190. · Zbl 1291.92018
[41] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl.100(5) (2013) 748-767. · Zbl 1326.35053
[42] Winkler, M., How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci.24(5) (2014) 809-855. · Zbl 1311.35040
[43] Winkler, M., Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst. - Ser. B22(7) (2017) 2777-2793. · Zbl 1377.35158
[44] Winkler, M., Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation, Ann. Inst. Henri Poincaré36(6) (2019) 1747-1790. · Zbl 1428.35611
[45] Winkler, M., Unlimited growth in logarithmic Keller-Segel systems, J. Differ. Equ.309 (2022) 74-97. · Zbl 1480.35383
[46] Zhang, Q., Global bounded solutions to a Keller-Segel system with singular sensitivity, Appl. Math. Lett.107 (2020) 106397. · Zbl 1441.35081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.