×

Negative powers of contractions having a strong \(AA^+\) spectrum. (English) Zbl 07863570

Summary: M. Zarrabi [Ann. Inst. Fourier 43, No. 1, 251–263 (1993; Zbl 0766.47002)] proved in 1993 that if the spectrum of a contraction \(T\) on a Banach space is a countable subset of the unit circle \(\mathbb{T}\), and if \(\lim_{n \to + \infty} \frac{\log (\|T^{-n}\|)}{\sqrt n} = 0\), then \(T\) is an isometry, so that \(\|T^n\| = 1\) for every \(n \in \mathbb{Z}\). It is also known that if \(\mathcal{C}\) is the usual triadic Cantor set then every contraction \(T\) on a Banach space such that \(\mathrm{Spec} (T) \subset \mathcal{C}\) satisfying \(\limsup_{n \to + \infty} \frac{\log (\|T^{-n}\|)}{n^\alpha} < +\infty\) for some \(\alpha < \frac{\log (3) - \log (2)}{2 \log (3) - \log (2)}\) is an isometry.
In the other direction an easy refinement of known results shows that if a closed \(E \subset \mathbb{T}\) is not a “strong \(AA^+\)-set” then for every sequence \((u_n)_{n \geq 1}\) of positive real numbers such that \(\liminf_{n \to +\infty} u_n = +\infty\) there exists a contraction \(T\) on some Banach space such that \(\mathrm{Spec} (T) \subset E\), \(\|T^{- n}\| = O(u_n)\) as \(n \to + \infty\) and \(\sup_{n \geq 1} \|T^{- n}\| = +\infty\).
We show conversely that if \(E \subset \mathbb{T}\) is a strong \(AA^+\)-set then there exists a nondecreasing unbounded sequence \((u_n)_{n \geq 1}\) such that for every contraction \(T\) on a Banach space satisfying \(\mathrm{Spec} (T) \subset E\) and \(\|T^{- n}\| = O(u_n)\) as \(n \to + \infty\) we have \(\sup_{n>0} \|T^{- n}\| \leq K\), where \(K < +\infty\) denotes the “\(AA^+\)-constant” of \(E\) (closed countanble subsets of \(\mathbb{T}\) and the triadic Cantor set are strong \(AA^+\)-sets of constant 1).

MSC:

43A46 Special sets (thin sets, Kronecker sets, Helson sets, Ditkin sets, Sidon sets, etc.)
46F15 Hyperfunctions, analytic functionals
46J10 Banach algebras of continuous functions, function algebras
42A20 Convergence and absolute convergence of Fourier and trigonometric series
47A10 Spectrum, resolvent

Citations:

Zbl 0766.47002

References:

[1] C. Agrafeuil, On the growth of powers of operators with spectrum contained in Cantor sets, Indiana Univ. Math. J. 54 (2005), 1473-1481. · Zbl 1091.47010
[2] C. Agrafeuil and K. Kellay, Tauberian type theorem for operators with interpolation spectrum for Hölder classes, Proc. Amer. Math. Soc. 136 (2008), 2477-2482., · Zbl 1200.30043
[3] O. El Fallah and K. Kellay, Sous-espaces invariants pour certains shifts pondérés, Ann. Inst. Fourier 48 (1998), 1543-1558. · Zbl 0919.47020
[4] J. Esterle, Singular inner functions and invariant subspaces for dissymetric weighted shifts, J. Funct. Anal. 144 (1997), 64-104. · Zbl 0938.47003
[5] J. Esterle, Distributions on Kronecker sets, strong forms of uniqueness, and closed ideals of A^+, J. Reine Angew. Math. 450 (1994), 43-82. · Zbl 0791.46026
[6] J. Esterle, Uniqueness, strong forms of uniqueness and negative powers of contractions, Functional analysis and operator theory (Warsaw, 1992), 127-145, Banach Center Publ., 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994. · Zbl 0893.46043
[7] J. Esterle, M. Rajoelina and M. Zarrabi, On contractions with spectrum contained in the Cantor set, Math. Proc. Camb. Phil. Soc. 117 (1995), 339-343. · Zbl 0830.47001
[8] J. Esterle, E. Strouse ans F. Zouakia, Closed ideals of A^+and the Cantor set, J. Reine Angew. Math. 449 (1994), 65-79. · Zbl 0791.46027
[9] J. Esterle, E. Strouse and F. Zouakia, Closed ideals of the algebra of absolutely convergent Taylor series, Bull. Amer. Math. Soc. (N.S.) 31 (1994), 39-43. · Zbl 0803.46052
[10] J. Esterle and A. Volberg, Asymptotically holomorphic functions and translation invariant subspaces of weighted Hilbert spaces of sequences, Ann. Sci. Ecole Norm. Sup. (4) 35 (2002),185-230. · Zbl 1059.47034
[11] J. P. Kahane and Y. Katznelson, Sur les algèbres de restrictions des séries de Taylor absolument convergentes à un fermé du cercle, J. Anal. Math. 23 (1970), 185-197. · Zbl 0228.43002
[12] J.P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. · Zbl 0112.29304
[13] K. Kellay, Contractions and hyperdistributions with Carleson spectra, J. London Math. Soc. (2) 58 (1998), 185-196. · Zbl 0945.47029
[14] R. Salem and A. Zygmund, Sur les ensembles parfaits dissymétriques à rapport constant, C. R. Acad. Sci. Paris Sér. A 240 (1955), 2281-2283. · Zbl 0066.31701
[15] M. Zarrabi, Contractions à spectre dénombrable et propriétés d’unicité des fermés dénombrables du cercle, Ann. Inst. Fourier 43 (1993), 251-263. · Zbl 0766.47002
[16] M. Zarrabi, On operators with spectrum in Cantor sets and spectral synthesis, J. Math. Anal. Appl. 462 (2018), 764-776. · Zbl 1514.47007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.