×

Symplectic capacities, unperturbed curves and convex toric domains. (English) Zbl 07851052

The authors define an infinite sequence of symplectic capacities, which they believe agree with a sequence previously defined by the second author [K. Siegel, “Higher symplectic capacities”, Preprint, arXiv:1902.01490]. They provide a combinatorial description of their invariants on all \(4\)-dimensional convex toric domains. Their sequence is defined for Liouville domains in terms of pseudoholomorphic curves, without using virtual perturbations, as the minimal energy of a \(J\)-pseudoholomorphic curve satisfying some tangency condition, and then taking the maximum over all choices of almost complex structures \(J\). They extend the definition to symplectic manifolds by taking the supremum over embedded Liouville domains. Calculation of these invariants in examples leads to some sharp obstructions for stabilized symplectic embeddings, i.e., symplectic embeddings \(X\times\mathbb{C}^N\hookrightarrow X'\times\mathbb{C}^N\).

MSC:

53D35 Global theory of symplectic and contact manifolds
57K43 Symplectic structures in 4 dimensions

References:

[1] 10.1090/fic/035/03 · doi:10.1090/fic/035/03
[2] 10.2140/gt.2003.7.799 · Zbl 1131.53312 · doi:10.2140/gt.2003.7.799
[3] 10.1007/s00209-004-0656-x · Zbl 1060.53080 · doi:10.1007/s00209-004-0656-x
[4] 10.1215/00127094-2008-062 · Zbl 1158.53067 · doi:10.1215/00127094-2008-062
[5] 10.4310/JSG.2007.v5.n3.a2 · Zbl 1149.53052 · doi:10.4310/JSG.2007.v5.n3.a2
[6] 10.1007/s00222-017-0767-8 · Zbl 1396.53105 · doi:10.1007/s00222-017-0767-8
[7] 10.4171/CMH/427 · Zbl 1398.53083 · doi:10.4171/CMH/427
[8] 10.1112/topo.12055 · Zbl 1394.53080 · doi:10.1112/topo.12055
[9] 10.1007/s11784-022-00942-z · Zbl 1503.53142 · doi:10.1007/s11784-022-00942-z
[10] 10.1007/BF01215653 · Zbl 0641.53035 · doi:10.1007/BF01215653
[11] 10.1007/BF02570756 · Zbl 0729.53039 · doi:10.1007/BF02570756
[12] 10.1007/BF01388806 · Zbl 0592.53025 · doi:10.1007/BF01388806
[13] ; Gromov, M., Soft and hard symplectic geometry, Proceedings of the International Congress of Mathematicians, I, 81, 1987 · Zbl 0664.53016
[14] 10.2140/agt.2018.18.3537 · Zbl 1411.53062 · doi:10.2140/agt.2018.18.3537
[15] 10.1007/s00222-013-0471-2 · Zbl 1296.53160 · doi:10.1007/s00222-013-0471-2
[16] 10.4310/JSG.2020.v18.n5.a2 · Zbl 1458.53088 · doi:10.4310/JSG.2020.v18.n5.a2
[17] 10.1090/crmp/049/10 · doi:10.1090/crmp/049/10
[18] ; Hutchings, Michael, Quantitative embedded contact homology, J. Differential Geom., 88, 2, 231, 2011 · Zbl 1238.53061
[19] 10.1007/978-3-319-02036-5_9 · doi:10.1007/978-3-319-02036-5\_9
[20] 10.2140/gt.2016.20.1085 · Zbl 1338.53119 · doi:10.2140/gt.2016.20.1085
[21] 10.1073/pnas.2203090119 · doi:10.1073/pnas.2203090119
[22] 10.4310/JSG.2007.v5.n1.a5 · Zbl 1157.53047 · doi:10.4310/JSG.2007.v5.n1.a5
[23] 10.4310/JSG.2009.v7.n1.a2 · Zbl 1193.53183 · doi:10.4310/JSG.2009.v7.n1.a2
[24] 10.1142/S1793525323500127 · Zbl 07916070 · doi:10.1142/S1793525323500127
[25] 10.2140/involve.2015.8.665 · Zbl 1322.53081 · doi:10.2140/involve.2015.8.665
[26] 10.1007/s40879-017-0184-y · Zbl 1393.53080 · doi:10.1007/s40879-017-0184-y
[27] 10.1112/topo.12204 · Zbl 07738192 · doi:10.1112/topo.12204
[28] 10.1090/jams/924 · Zbl 1422.53071 · doi:10.1090/jams/924
[29] 10.1007/978-3-0348-8577-5 · doi:10.1007/978-3-0348-8577-5
[30] 10.2140/gt.2011.15.2351 · Zbl 1246.32028 · doi:10.2140/gt.2011.15.2351
[31] 10.1093/imrn/rnaa334 · Zbl 07573380 · doi:10.1093/imrn/rnaa334
[32] 10.4171/CMH/199 · Zbl 1207.32021 · doi:10.4171/CMH/199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.