×

Asymptotically almost automorphic mild solutions for semilinear integro-differential evolution equations. (English) Zbl 07850790

Summary: In this paper, we investigate the existence of asymptotically almost automorphic mild solution for a class of integro-differential equations. The existence results are established through the application of Mönch’s fixed point theorem and the utilization of measures of non-compactness. Additionally, we present an illustrative example to showcase the obtained outcomes.

MSC:

34G20 Nonlinear differential equations in abstract spaces
Full Text: DOI

References:

[1] M. M. Arjunan, N. Mlaiki, V. Kavitha, T. Abdeljawad. On frac-tional state-dependent delay integro-differential systems under the Mittag-Leffler kernel in Banach space. AIMS Math. 8 (2023), no. 1, 1384-1409.
[2] S. M. Aydogan, A. Hussain, F. M. Sakar, On a nonlinear fractional order model of novel coronavirus (nCoV-2019) under AB-fractional derivative. J. Math. Ext. 15 (11) (2021), 1-31. https://doi.org/10.30495/JME.SI.2021.1994 · Zbl 1485.92004 · doi:10.30495/JME.SI.2021.1994
[3] D. Baleanu, S. M. Aydogn, H. Mohammadi, S. Rezapour, On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method, Alexandria Engineering Journal. 59 (5) (2020), 3029-3039. https://doi.org/10.1016/j.aej.2020.05.007 · doi:10.1016/j.aej.2020.05.007
[4] D. Baleanu, S. Etemad, H. Mohammadi, S. Rezapour, A novel modeling of boundary value problems on the glucose graph, Commun. Nonlinear Sci. Numer. Simul. 100 (2021), 105844. https://doi.org/10.1016/j.cnsns.2021.105844 · Zbl 1466.92244 · doi:10.1016/j.cnsns.2021.105844
[5] D. Baleanu, K. Ghafarnezhad, S. Rezapour and M. Shabibi, On the existence of solutions of a three steps crisis integro-differential equation. Adv Differ Equ. 2018 (2018), 135. https://doi.org/10.1186/s13662-018-1583-1 · Zbl 1445.45011 · doi:10.1186/s13662-018-1583-1
[6] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Ca-puto-Fabrizio fractional derivative, Chaos, Solitons & Fractals. 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 · Zbl 1483.92041 · doi:10.1016/j.chaos.2020.109705
[7] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces. Lecture Note in Pure App. Math. 60, Dekker, New York, 1980. · Zbl 0441.47056
[8] M. Benchohra, F. Bouazzaoui, E. Karapınar and A. Salim, Controllability of second order functional random differen-tial equations with delay. Mathematics. 10 (2022), 16pp. https://doi.org/10.3390/math10071120 · doi:10.3390/math10071120
[9] N. Benkhettou, K. Aissani, A. Salim, M. Benchohra and C. Tunc, Controllability of fractional integro-differential equations with infi-nite delay and non-instantaneous impulses, Appl. Anal. Optim. 6 (2022), 79-94. · Zbl 1501.34064
[10] A. Bensalem, A. Salim and M. Benchohra, Ulam-Hyers-Rassias stability of neutral functional integrodifferential evo-lution equations with non-instantaneous impulses on an un-bounded interval, Qual. Theory Dyn. Syst. 22 (2023), 29 pages. https://doi.org/10.1007/s12346-023-00787-y · Zbl 1514.45009 · doi:10.1007/s12346-023-00787-y
[11] A. Bensalem, A. Salim, M. Benchohra and M. Fečkan, Approximate controllability of neutral functional integro-differential equations with state-dependent delay and non-instantaneous impulses, Math-ematics. 11 (2023), 1-17. https://doi.org/10.3390/math11071667 · doi:10.3390/math11071667
[12] A. Bensalem, A. Salim, M. Benchohra and G. N’Guérékata, Functional integro-differential equations with state-dependent delay and non-instantaneous impulsions: exis-tence and qualitative results, Fractal Fract. 6 (2022), 1-27. https://doi.org/10.3390/fractalfract6100615 · doi:10.3390/fractalfract6100615
[13] S. Bochner, Continuous mappings of almost automorphic and al-most periodic functions, Proc. Natl. Acad. Sci. USA 52 (1964), pp. 907-910. · Zbl 0134.30102
[14] T. Caraballo and D. Cheban, Almost periodic and almost auto-morphic solutions of linear diferential/diference equations without Favard’s separation condition, I. J. Diferential Equations 246 (1) (2009), 108-128. · Zbl 1166.34021
[15] J. Cao, Q. Yang, Z. Huang, Existence and exponential stability of almost automorphic mild solutions for stochastic functional differ-ential equations. Stochastics 83 (2011), 259-275. · Zbl 1221.60078
[16] J. Cao, Z. Huang, G.M. N’Guérékata. Existence of asymptotically almost automorphic mild solutions for nonautonomous semilinear evolution equations. Electron. J. Differential Equations 2018, Paper No. 37, 16 pp. · Zbl 1397.34101
[17] P. Chen, Y. Li, Monotone iterative technique for a class of semilin-ear evolution equations with nonlocal conditions, Results Math. 63 (2013), 731-744. · Zbl 1279.34072
[18] C. Corduneanu, Integral Equations and Stability of Feedback Sys-tems, Academic Press, New York, 1973. · Zbl 0273.45001
[19] W. Desch, R. Grimmer, W. Schappacher, Some considerations for linear integro-differential equations, J. Math. Anal. Appl. 104 (1984) 219-234. · Zbl 0595.45027
[20] T. Dianaga, G. M. N’Guérékata, Almost automorphic solutions to some classes of partial evolution equations, Appl. Math. Lett. 20 (2007), 462-466. · Zbl 1169.35300
[21] H. S. Ding, T. J. Xiao, J. Liang. Asymptotically almost automor-phic solutions for some integrodifferential equations with nonlocal initial conditions. J. Math. Anal. Appl. 338 (2008), no. 1, 141-151. · Zbl 1142.45005
[22] K. Ezzinbi, and G. M. N’Guérékata, Almost automorphic solutions for some partial functional differential equations. J. Math. Anal. Appl. 328 (1) (2007), 344-358. · Zbl 1121.34081
[23] R. George, F. Al-shammari, M. Ghaderi, S. Rezapour, On the boundedness of the solution set for the ψ-Caputo frac-tional pantograph equation with a measure of non-compactness via simulation analysis. AIMS Math. 8 (9) (2023), 20125-20142. https://doi.org/10.3934/math.20231025 · doi:10.3934/math.20231025
[24] R. George, S. M. Aydogan, F. M. Sakar, M. Ghaderi, S. Rezapour, A study on the existence of numerical and analyti-cal solutions for fractional integrodifferential equations in Hilfer type with simulation. AIMS Math. 8 (5) (2023), 10665-10684. https://doi.org/10.3934/math.2023541 · doi:10.3934/math.2023541
[25] R. George, M. Houas, M. Ghaderi, S. Rezapour, S. K. Ela-gan, On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities. Results in Physics. 39 (2022), 105687. https://doi.org/10.1016/j.rinp.2022.105687 · doi:10.1016/j.rinp.2022.105687
[26] J. A. Goldstein, G.M. N’Guérékata, Almost automorphic solutions of semilinear evolution equations, Proc. Amer. Math. Soc. 133 (2005), 2401-2408. · Zbl 1073.34073
[27] R.C. Grimmer, Resolvent operators for integral equations in a Ba-nach space, Trans. Amer. Math. Soc. 273 (1982) 333-349. · Zbl 0493.45015
[28] H. P. Heinz, On the behaviour of measure of noncompactness with respect to differentiation and integration of rector-valued functions, Nonlinear Anal. 7 (1983), 1351-1371. · Zbl 0528.47046
[29] Z. Heydarpour, M. N. Parizi, R. Ghorbnian, M. Ghaderi, S. Rezapour, A. Mosavi, A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction. AIMS Math. 7 (10) (2022), 18253-18279. https://doi.org/10.3934/math.20221004 · doi:10.3934/math.20221004
[30] S. José, C. Claudio. Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations. Appl. Math. Lett. 23 (2010), no. 9, 960-965. · Zbl 1198.45014
[31] V. Kavitha, J. Grayna, K. Senthilvadivu, A study on asymptot-ically almost automorphic solution of impulsive Volterra integro-differential equation. Nonlinear Stud. 28 (2021), no. 3, 709-715.
[32] H. Khan, K. Alam, H. Gulzar, S. Etemad, S. Rezapour, A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical sim-ulations, Math. Comput. Simulation. 198 (2022), 455-473. https://doi.org/10.1016/j.matcom.2022.03.009 · Zbl 1540.92199 · doi:10.1016/j.matcom.2022.03.009
[33] J. Liang, J. H. Liu, T. J. Xiao, Nonlocal problems for integrodiffer-ential equations, Dyn. Contin. Discr. Impulsive Sys. Series A, 15 (2008), 815-824. · Zbl 1163.45010
[34] J. Liang, J. Zhang, T. Xiao. Composition of pseudo almost au-tomorphic and asymptotically almost automorphic functions. J. Math. Anal. Appl. 340 (2008), no. 2, 1493-1499. · Zbl 1134.43001
[35] J. H. Liu, K. Ezzinbi, Non-Autonomous integrodifferential equa-tions with nonlocal conditions, J. Integral Equations 15 (2003), 79-93. · Zbl 1044.45002
[36] L. Mahto and S. Abbas, PC-almost automorphic solution of im-pulsive fractional diferential equations, Mediter. J. Math. 12 (3) (2015), 771-790. · Zbl 1325.34014
[37] G. Mophoua, G. M. N’Guérékata. On some classes of almost auto-morphic functions and applications to fractional differential equa-tions. Compu. Math. Appl. 59 (2010), 1310-1317. · Zbl 1189.34142
[38] H. Mönch, Boundary value problems for nonlinear ordinary differ-ential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), 985-999. · Zbl 0462.34041
[39] G. M. N’Guérékata, Sur les solutions presqu’utomorphes d’équations différentielles abstraites [On almost automorphic so-lutions of abstract differential equations], Ann. Sci. Math. Québec 5 (1981), pp. 69-79. · Zbl 0503.34035
[40] G. M. N’Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic, New York, 2001. · Zbl 1001.43001
[41] G. M. N’Guérékata, Topics in Almost Automorphy, Springer, New York, 2005. · Zbl 1073.43004
[42] G. M. N’Guérékata, Spectral Theory for Bounded Functions and Applications to Evolution Equations, Nova Science Pub. NY, 2017. · Zbl 1455.34001
[43] S. Rezapour, A. Imran, A. Hussain, F. Martínez, S. Etemad, M. K. A. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry. 13 (3) (2021), 469. https://doi.org/10.3390/sym13030469 · doi:10.3390/sym13030469
[44] S. Rezapour, S. T. M. Thabet, I. Kedim, M. Vivas-Cortez, M. Ghaderi, A computational method for investi-gating a quantum integrodifferential inclusion with simula-tions and heatmaps. AIMS Math. 8 (11) (2023), 27241-27267. https://doi.org/10.3934/math.20231394 · doi:10.3934/math.20231394
[45] N. Rezoug, M. Benchohra, K. Ezzinbi. Asymptotically automor-phic solutions of abstract fractional evolution equations with non-instantaneous impulses. Surv. Math. Appl. 17 (2022), 113-138. · Zbl 1486.34114
[46] A. Salim, F. Mesri, M. Benchohra and C. Tunç, Controlla-bility of second order semilinear random differential equations in Fréchet spaces. Mediterr. J. Math. 20 (84) (2023), 1-12. https://doi.org/10.1007/s00009-023-02299-0 · Zbl 1505.34098 · doi:10.1007/s00009-023-02299-0
[47] M. E. Samei, H. Zanganeh and S. M. Aydogan, Investigation of a class of the singular fractional integro-differential quantum equa-tions with multi-step methods. J. Math. Ext. 15 (2021), 1-54. https://doi.org/10.30495/JME.SI.2021.2070 · Zbl 1485.34049 · doi:10.30495/JME.SI.2021.2070
[48] W. Veech. Almost automorphic functions. Proc. Nat. Acad. Sci. USA 49 (1963), 462-464. · Zbl 0173.33402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.