×

Stochastic second-gradient continuum theory for particle-based materials. II. (English) Zbl 07845566

Summary: This article is the second part of a previous article devoted to the deterministic aspects. Here, we present a comprehensive study on the development and application of a novel stochastic second-gradient continuum model for particle-based materials. An application is presented concerning colloidal crystals. Since we are dealing with particle-based materials, factors such as the topology of contacts, particle sizes, shapes, and geometric structure are not considered. The mechanical properties of the introduced second-gradient continuum are modeled as random fields to account for uncertainties. The stochastic computational model is based on a mixed finite element (FE), and the Monte Carlo (MC) numerical simulation method is used as a stochastic solver. Finally, the resulting stochastic second-gradient model is applied to analyze colloidal crystals, which have wide-ranging applications. The simulations show the effects of second-order gradient on the mechanical response of a colloidal crystal under axial load, for which there could be significant fluctuations in the displacements.

MSC:

74A30 Nonsimple materials
60G60 Random fields
Full Text: DOI

References:

[1] La Valle, G.; Soize, C., A higher-order nonlocal elasticity continuum model for deterministic and stochastic particle-based materials, Z. Angew. Math. Phys., 75, 49, 2024 · Zbl 1541.74004 · doi:10.1007/s00033-024-02196-w
[2] Placidi, L.; Barchiesi, E.; Misra, A.; Timofeev, D., Micromechanics-based elasto-plastic-damage energy formulation for strain gradient solids with granular microstructure, Contin. Mech. Thermodyn., 33, 2213-2241, 2021 · Zbl 1521.74175 · doi:10.1007/s00161-021-01023-1
[3] Diana, V., Anisotropic continuum-molecular models: a unified framework based on pair potentials for elasticity, fracture and diffusion-type problems, Arch. Comput. Methods Eng., 30, 1305-1344, 2023 · doi:10.1007/s11831-022-09846-0
[4] Sperling, S.; Hoefnagels, J.; van den Broek, K.; Geers, M., A continuum particle model for micro-scratch simulations of crystalline silicon, J. Mech. Phys. Solids, 182, 2024 · doi:10.1016/j.jmps.2023.105469
[5] Eremeyev, VA; Lebedev, LP; Altenbach, H., Foundations of Micropolar Mechanics, 2013, Berlin: Springer, Berlin · Zbl 1257.74002 · doi:10.1007/978-3-642-28353-6
[6] Altenbach, H.; Eremeyev, VA, Generalized Continua from the Theory to Engineering Applications, 2013, Vienna: Springer, Vienna · Zbl 1254.74005 · doi:10.1007/978-3-7091-1371-4
[7] Manzari, MT, Application of micropolar plasticity to post failure analysis in geomechanics, Int. J. Numer. Anal. Methods Geomech., 28, 1011-1032, 2004 · Zbl 1075.74581 · doi:10.1002/nag.356
[8] Mohan, LS; Nott, PR; Rao, KK, A frictional Cosserat model for the slow shearing of granular materials, J. Fluid Mech., 457, 377-409, 2002 · Zbl 1112.76487 · doi:10.1017/S0022112002007796
[9] Giorgio, I.; Hild, F.; Gerami, E.; dell’Isola, F.; Misra, A., Experimental verification of 2D Cosserat chirality with stretch-micro-rotation coupling in orthotropic metamaterials with granular motif, Mech. Res. Commun., 126, 2022 · doi:10.1016/j.mechrescom.2022.104020
[10] dell’Isola, F.; Seppecher, P., The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power, Comptes Rendus de l’Academie de Sciences-Serie IIb: Mecanique, Physique, Chimie, Astronomie, 321, 303-308, 1995 · Zbl 0844.73006
[11] dell’Isola, F.; Seppecher, P., Edge contact forces and quasi-balanced power, Meccanica, 32, 33-52, 1997 · Zbl 0877.73055 · doi:10.1023/A:1004214032721
[12] Misra, A.; Yang, Y., Micromechanical model for cohesive materials based upon pseudo-granular structure, Int. J. Solids Struct., 47, 2970-2981, 2010 · Zbl 1196.74161 · doi:10.1016/j.ijsolstr.2010.07.002
[13] dell’Isola, F.; Giorgio, I.; Pawlikowski, M.; Rizzi, NL, Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium, Proc. R. Soc. A Math. Phys. Eng. Sci., 472, 20150790, 2016
[14] Alibert, J-J; Seppecher, P.; dell’Isola, F., Truss modular beams with deformation energy depending on higher displacement gradients, Math. Mech. Solids, 8, 51-73, 2003 · Zbl 1039.74028 · doi:10.1177/1081286503008001658
[15] Ciallella, A., Research perspective on multiphysics and multiscale materials: a paradigmatic case, Contin. Mech. Thermodyn., 32, 527-539, 2020 · doi:10.1007/s00161-020-00894-0
[16] Spagnuolo, M.; Yildizdag, ME; Andreaus, U.; Cazzani, A., Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures?, Math. Mech. Solids, 26, 18-29, 2021 · Zbl 1486.74005 · doi:10.1177/1081286520937339
[17] Ciallella, A.; D’Annibale, F.; Del Vescovo, D.; Giorgio, I., Deformation patterns in a second-gradient lattice annular plate composed of “spira mirabilis” fibers, Contin. Mech. Thermodyn., 35, 1561-1580, 2022 · doi:10.1007/s00161-022-01169-6
[18] Ciallella, A.; Giorgio, I.; Eugster, SR; Rizzi, NL; dell’Isola, F., Generalized beam model for the analysis of wave propagation with a symmetric pattern of deformation in planar pantographic sheets, Wave Motion, 113, 2022 · Zbl 1524.74279 · doi:10.1016/j.wavemoti.2022.102986
[19] Ciallella, A.; La Valle, G.; Vintache, A.; Smaniotto, B.; Hild, F., Deformation mode in 3-point flexure on pantographic block, Int. J. Solids Struct., 265-266, 2023 · doi:10.1016/j.ijsolstr.2023.112129
[20] Misra, A.; Placidi, L.; dell’Isola, F.; Barchiesi, E., Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics, Z. Angew. Math. Phys., 72, 1-21, 2021 · Zbl 1470.74008 · doi:10.1007/s00033-021-01587-7
[21] Yang, Y.; Misra, A., Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity, Int. J. Solids Struct., 49, 2500-2514, 2012 · doi:10.1016/j.ijsolstr.2012.05.024
[22] Doob, JL, Stochastic Processes, 1953, New York: Wiley, New York · Zbl 0053.26802
[23] Guikhman, II; Skorokhod, A., Introduction à la Théorie des Processus Aléatoires, 1980, Moscow: Edition Mir, Moscow · Zbl 0573.60003
[24] Krée, P.; Soize, C., Mathematics of Random Phenomena, 1986, Dordrecht: Reidel Pub. Co, Dordrecht · Zbl 0628.73099
[25] Ghanem, R.; Spanos, PD, Stochastic Finite Elements: A Spectral Approach, 1991, New York: Springer, New York · Zbl 0722.73080 · doi:10.1007/978-1-4612-3094-6
[26] Soize, C., The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. Series on Advances in Mathematics for Applied Sciences, 1994, Singapore: World Scientific, Singapore · Zbl 0807.60072
[27] Ostoja-Starzewski, M., Random field models of heterogeneous materials, Int. J. Solids Struct., 35, 2429-2455, 1998 · Zbl 0967.74513 · doi:10.1016/S0020-7683(97)00144-3
[28] Rozanov, Y., Random Fields and Stochastic Partial Differential Equations, 1998, Amsterdam: Kluwer Academic Publishers, Amsterdam · Zbl 0902.60049 · doi:10.1007/978-94-017-2838-6
[29] Vanmarcke, E., Random Fields: Analysis and Synthesis, 2010, Singapore: World Scientific, Singapore · Zbl 1220.60030 · doi:10.1142/5807
[30] Soize, C., Construction of probability distributions in high dimension using the maximum entropy principle. Applications to stochastic processes, random fields and random matrices, Int. J. Numer. Methods Eng., 76, 1583-1611, 2008 · Zbl 1195.74311 · doi:10.1002/nme.2385
[31] Soize, C., Stochastic elliptic operators defined by non-Gaussian random fields with uncertain spectrum, Am. Math. Soc. J. Theory Probab. Math. Stat., 105, 113-136, 2021 · Zbl 1485.60051 · doi:10.1090/tpms/1159
[32] Malyarenko, A.; Ostoja-Starzewski, M., Tensor-and spinor-valued random fields with applications to continuum physics and cosmology, Probab. Surv., 20, 1-86, 2023 · Zbl 1502.60078 · doi:10.1214/22-PS12
[33] Sab, K., On the homogenization and the simulation of random materials, Eur. J. Mech. A/Solids, 11, 585-607, 1992 · Zbl 0766.73008
[34] Jeulin, D.; Ostoja-Starzewski, M., Mechanics of Random and Multiscale Microstructures, 2001, Berlin: Springer, Berlin · Zbl 0984.00031 · doi:10.1007/978-3-7091-2780-3
[35] Torquato, S., Random Heterogeneous Materials, Microstructure and Macroscopic Properties, 2000, New York: Springer, New York
[36] Kanit, T.; Forest, S.; Galliet, I.; Mounoury, V.; Jeulin, D., Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., 40, 3647-3679, 2003 · Zbl 1038.74605 · doi:10.1016/S0020-7683(03)00143-4
[37] Guilleminot, J.; Noshadravanb, A.; Soize, C.; Ghanem, R., A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures, Comput. Methods Appl. Mech. Eng., 200, 1637-1648, 2011 · Zbl 1228.74019 · doi:10.1016/j.cma.2011.01.016
[38] Ghanem, R., Stochastic finite element analysis for multiphase flow in heterogeneous porous media, Transp. Porous Media, 32, 239-262, 1998 · doi:10.1023/A:1006514109327
[39] Nguyen, MT; Desceliers, C.; Soize, C.; Allain, JM; Gharbi, H., Multiscale identification of the random elasticity field at mesoscale of a heterogeneous microstructure, Int. J. Multiscale Comput. Eng., 13, 281-295, 2015 · doi:10.1615/IntJMultCompEng.2015011435
[40] Staber, B.; Guilleminot, J.; Soize, C.; Michopoulos, J.; Iliopoulos, A., Stochastic modeling and identification of a hyperelastic constitutive model for laminated composites, Comput. Methods Appl. Mech. Eng., 347, 425-444, 2019 · Zbl 1440.74073 · doi:10.1016/j.cma.2018.12.036
[41] Cong, H.; Yu, B.; Tang, J.; Li, Z.; Liu, X., Current status and future developments in preparation and application of colloidal crystals, Chem. Soc. Rev., 42, 7774-7800, 2013 · doi:10.1039/c3cs60078e
[42] Wang, Y.; Jenkins, IC; McGinley, JT; Sinno, T.; Crocker, JC, Colloidal crystals with diamond symmetry at optical lengthscales, Nat. Commun., 8, 14173, 2017 · doi:10.1038/ncomms14173
[43] Zhu, C., Colloidal materials for 3d printing, Annu. Rev. Chem. Biomol. Eng., 10, 17-42, 2019 · doi:10.1146/annurev-chembioeng-060718-030133
[44] Wang, S., The emergence of valency in colloidal crystals through electron equivalents, Nat. Mater., 21, 580-587, 2022 · doi:10.1038/s41563-021-01170-5
[45] Liu, K., 3d printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography, Nat. Commun., 13, 4563, 2022 · doi:10.1038/s41467-022-32317-w
[46] Soize, C., Uncertainty Quantification, 2017, New York: Springer, New York · Zbl 1377.60002 · doi:10.1007/978-3-319-54339-0
[47] Soize, C., An overview on uncertainty quantification and probabilistic learning on manifolds in multiscale mechanics of materials, Math. Mech. Complex Syst., 11, 87-174, 2023 · Zbl 1535.60122 · doi:10.2140/memocs.2023.11.87
[48] Cover, TM; Thomas, JA, Elements of Information Theory, 2006, Hoboken: Wiley, Hoboken · Zbl 1140.94001
[49] Gray, RM, Entropy and Information Theory, 2011, New York: Springer, New York · Zbl 1216.94001 · doi:10.1007/978-1-4419-7970-4
[50] Soize, C., Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Comput. Methods Appl. Mech. Eng., 195, 26-64, 2006 · Zbl 1093.74065 · doi:10.1016/j.cma.2004.12.014
[51] Soize, C., Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probab. Eng. Mech., 23, 307-323, 2008 · doi:10.1016/j.probengmech.2007.12.019
[52] Guilleminot, J.; Soize, C., Stochastic model and generator for random fields with symmetry properties: application to the mesoscopic modeling of elastic random media, Multiscale Model. Simul. (SIAM Interdiscip. J.), 11, 840-870, 2013 · Zbl 1355.74073 · doi:10.1137/120898346
[53] Guilleminot, J.; Soize, C., On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties, J. Elast., 111, 109-130, 2013 · Zbl 1273.74007 · doi:10.1007/s10659-012-9396-z
[54] La Valle, G., Soize, C., Abali, B., Falsone, G.: Sensitivity of a homogeneous and isotropic second-gradient continuum model for particle-based materials with respect to uncertainties. Zeitschrift für angewandte Mathematik und Mechanik e202300068-1-20 ( 2023) · Zbl 1538.74007
[55] Placidi, L.; Misra, A.; Barchiesi, E., Two-dimensional strain gradient damage modeling: a variational approach, Z. Angew. Math. Phys., 69, 1-19, 2018 · Zbl 1393.74168 · doi:10.1007/s00033-018-0947-4
[56] Oswald, P.; Pieranski, P., Les cristaux liquides. Tome 1, 2000, Philadelphia: Gordon and Breach Science Publishers, Philadelphia
[57] Oswald, P.; Pieranski, P., Les cristaux liquides. Tome 2, 2002, Philadelphia: Gordon and Breach Science Publishers, Philadelphia
[58] Lindsay, HM; Chaikin, PM, Elastic properties of colloidal crystals and glasses, J. Chem. Phys., 76, 3774-3781, 1982 · doi:10.1063/1.443417
[59] Zhang, K-Q; Liu, XY, Determination of elastic constants of two-dimensional close-packed colloidal crystals, Langmuir, 25, 5432-5436, 2009 · doi:10.1021/la804301y
[60] Shekarchizadeh, N.; Abali, BE; Bersani, AM, A benchmark strain gradient elasticity solution in two-dimensions for verifying computational approaches by means of the finite element method, Math. Mech. Solids, 27, 2218-2238, 2022 · Zbl 07619133 · doi:10.1177/10812865221114336
[61] Greco, L.; Cuomo, M., An isogeometric implicit G1 mixed finite element for Kirchhoff space rods, Comput. Methods Appl. Mech. Eng., 298, 325-349, 2016 · Zbl 1425.74259 · doi:10.1016/j.cma.2015.06.014
[62] Abali, B.E.: Supply code for computations (2023). https://bilenemek.abali.org/
[63] GNU Public. Gnu general public license (2007)
[64] La Valle, G., Soize, C.: Identifying second-gradient continuum models in particle-based materials with pairwise interactions using acoustic tensor methodology. J. Elast. (2024). doi:10.1007/s10659-024-10067-8
[65] de Oliveira Reis, G., The smart response of natural rubber latex gels: Irreversible hardening of a colloidal gel under shear, J. Colloid Interface Sci., 539, 287-296, 2019 · doi:10.1016/j.jcis.2018.12.031
[66] Babacic, V., Mechanical reinforcement of polymer colloidal crystals by supercritical fluids, J. Colloid Interface Sci., 579, 786-793, 2020 · doi:10.1016/j.jcis.2020.06.104
[67] Valle, GL; Spagnuolo, M.; Turco, E.; Desmorat, B., A new torsional energy for pantographic sheets, Z. Angew. Math. Phys., 74, 67, 2023 · Zbl 1509.74039 · doi:10.1007/s00033-023-01954-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.