×

Convergence analysis of an IMEX scheme for an integro-differential equation with inexact boundary arising in option pricing with stochastic intensity jumps. (English) Zbl 07839865

Summary: In this paper, we are concerned with the convergence rates of an implicit-explicit (IMEX) difference scheme for solving a two-dimensional partial integro-differential equation (PIDE) with an inexact boundary which arises in option pricing with stochastic intensity jumps. First, the IMEX scheme is proposed to solve the two-dimensional PIDE and its inexact boundary governed by a one-dimensional PIDE. Then the second-order convergence rates of the IMEX scheme for the main PIDE are proved for both time and space based on the second-order convergence analysis in the discrete \(H^1\)-norm of the IMEX scheme for the boundary PIDE. Numerical examples are given to illustrate the theoretical results.

MSC:

65-XX Numerical analysis
91-XX Game theory, economics, finance, and other social and behavioral sciences
Full Text: DOI

References:

[1] Black, F.; Scholes, M., The pricing of options and corporate liabilities, J. Polit. Econ., 81, 637-654, 1973 · Zbl 1092.91524
[2] Bank, R. E.; Santos, R. F., Analysis of some moving space-time finite element methods, SIAM J. Numer. Anal., 30, 1-18, 1993 · Zbl 0770.65060
[3] Cen, Z.; Huang, J.; Xu, A.; Le, A., Numerical approximation of a time-fractional Black-Scholes equation, Comput. Math. Appl., 75, 2874-2887, 2018 · Zbl 1415.65187
[4] Chen, Y.; Ma, J. T., Numerical methods for a partial differential equation with spatial delay arising in option pricing under hard-to-borrow model, Comput. Math. Appl., 76, 2129-2140, 2018 · Zbl 1442.65155
[5] Chen, Y. Z.; Xiao, A. G.; Wang, W. S., An IMEX-BDF2 compact scheme for pricing options under regime-switching jump-diffusion models, Math. Methods Appl. Sci., 42, 2646-2663, 2019 · Zbl 1417.65150
[6] Chen, Y., Second-order IMEX scheme for a system of partial integro-differential equations from Asian option pricing under regime-switching jump-diffusion models, Numer. Algorithms, 89, 1823-1843, 2022 · Zbl 1485.91250
[7] Dang, D. M.; Nguyen, D.; Sewell, G., Numerical schemes for pricing Asian options under state-dependent regime-switching jump-diffusion models, Comput. Math. Appl., 71, 443-458, 2016 · Zbl 1443.65199
[8] Huang, J.; Zhu, W.; Ruan, X., Option pricing using the fast Fourier transform under the double exponential jump model with stochastic volatility and stochastic intensity, J. Comput. Appl. Math., 263, 152-159, 2014 · Zbl 1291.91232
[9] Huang, C. S.; Hara, J. G.; Mataramvura, S., Highly efficient Shannon wavelet-based pricing of power options under the double exponential jump framework with stochastic jump intensity and volatility, Appl. Math. Comput., 414, Article 126669 pp., 2022 · Zbl 1510.91186
[10] Ji, C. C.; Du, R.; Sun, Z. Z., Stability and convergence of difference schemes for multi-dimensional parabolic equations with variable coefficients and mixed derivatives, Int. J. Comput. Math., 95, 255-277, 2018 · Zbl 1390.65071
[11] Kou, S. G., A jump diffusion model for option pricing, Manag. Sci., 48, 1086-1101, 2002 · Zbl 1216.91039
[12] Kwon, Y.; Lee, Y., A second-order finite difference method for option pricing under jump-diffusion models, SIAM J. Numer. Anal., 49, 2598-2617, 2011 · Zbl 1232.91712
[13] Kadalbajoo, M. K.; Tripathi, L. P.; Kumar, K., Second order accurate IMEX methods for option pricing under Merton and Kou jump-diffusion model, J. Sci. Comput., 65, 979-1024, 2015 · Zbl 1331.91191
[14] Kadalbajoo, M. K.; Tripathi, L. P.; Kumar, K., An error analysis of a finite element method with IMEX-time semidiscretizations for some partial integro-differential inequalities arising in the pricing of American options, SIAM J. Numer. Anal., 55, 869-891, 2017 · Zbl 1362.65094
[15] Kazmi, K., An IMEX predictor-corrector method for pricing options under regime-switching jump-diffusion models, Int. J. Comput. Math., 96, 1137-1157, 2019 · Zbl 1481.91220
[16] Ladyzenskaja, O. A.; Solonnikov, V. A.; Uraltseva, N. N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, 1968, American Mathematical Society: American Mathematical Society Providence, R.I., Translated from the Russian by S. Smith · Zbl 0174.15403
[17] Lee, Y. H., Financial options pricing with regime-switching jump-diffusions, Comput. Math. Appl., 68, 392-404, 2014 · Zbl 1369.91192
[18] Ma, J. T.; Zhou, Z., Convergence rates of moving mesh Rannacher methods for PDEs of Asian options pricing, J. Comput. Math., 34, 265-286, 2016
[19] Ma, J.; Zhou, Z., Convergence analysis of iterative Laplace transform methods for the coupled PDEs from regime-switching option pricing, J. Sci. Comput., 75, 1656-1674, 2018 · Zbl 1404.65096
[20] Morton, K. W.; Mayers, D. F., Numerical Solution of Partial Differential Equations, 2005, Cambridge University Press: Cambridge University Press New York · Zbl 1126.65077
[21] Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, 2004, Springer-Verlag: Springer-Verlag Berlin · Zbl 1068.91041
[22] Santa-Clara, P.; Yan, S., Crashes, volatility, and the equity premium: lessons from S&P 500 options, Rev. Econ. Stat., 92, 435-451, 2010
[23] Salmi, S.; Toivanen, J., IMEX schemes for pricing options under jump-diffusion models, Appl. Numer. Math., 84, 33-45, 2014 · Zbl 1291.91234
[24] Salmi, S.; Toivanen, J.; Von Sydow, L., An IMEX-scheme for pricing options under stochastic volatility models with jumps, SIAM J. Sci. Comput., 36, B817-B834, 2014 · Zbl 1308.91193
[25] Sydow, L. V.; Toivanen, J.; Zhang, C., Adaptive finite difference and IMEX time-stepping to price options under Bates model, Int. J. Comput. Math., 92, 2515-2529, 2015 · Zbl 1386.91170
[26] Soleymani, F.; Zhu, S., Error and stability estimates of a time-fractional option pricing model under fully spatial-temporal graded meshes, J. Comput. Appl. Math., 425, Article 115075 pp., 2023 · Zbl 07700264
[27] Tian, Q.; Yang, X.; Zhang, H.; Xu, D., An implicit robust numerical scheme with graded meshes for the modified Burgers model with nonlocal dynamic properties, Comput. Appl. Math., 42, 246, 2023 · Zbl 1538.65392
[28] Wang, W.; Chen, Y.; Fang, H., On the variable two-step IMEX BDF methods for parabolic integro-differential equations with nonsmooth initial data arising in finance, SIAM J. Numer. Anal., 57, 1289-1317, 2019 · Zbl 1422.65189
[29] Wang, W.; Mao, M.; Wang, Z., An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function, ESAIM: Math. Model. Numer. Anal., 55, 913-938, 2021 · Zbl 1481.65160
[30] Wang, W.; Zhang, H.; Jiang, X.; Yang, X., A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor, Ann. Nucl. Energy, 195, Article 110163 pp., 2024
[31] Yang, B. Z.; Yue, J.; Wang, M. H.; Huang, N. J., Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity, Appl. Math. Comput., 355, 73-84, 2019 · Zbl 1429.91330
[32] Yang, X.; Wu, L.; Zhang, H., A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457, Article 128192 pp., 2023 · Zbl 07736216
[33] Yang, X.; Zhang, Z., On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150, Article 108972 pp., 2024 · Zbl 1534.65163
[34] Zhang, H.; Yang, X.; Tang, Q.; Xu, D., A robust error analysis of the OSC method for a multi-term fourth-order sub-diffusion equation, Comput. Math. Appl., 109, 180-190, 2022 · Zbl 1524.65694
[35] Zhang, H.; Liu, Y.; Yang, X., An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput., 69, 651-674, 2023 · Zbl 1515.65338
[36] Zhou, Z.; Zhang, H.; Yang, X., \( H^1\)-norm error analysis of a robust ADI method on graded mesh for three-dimensional subdiffusion problems, Numer. Algorithms, 2023, (published online)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.