×

Heavy quarkonium systems for the deformed unequal scalar and vector Coulomb-Hulthén potential within the deformed effective mass Klein-Gordon equation using the improved approximation of the centrifugal term and Bopp’s shift method in RNCQM symmetries. (English) Zbl 07822286

Summary: In this study, the analytical solutions of the Klein-Gordon equation for any \(l\) states of the modified effective mass potential under the modified unequal scalar and vector Coulomb-Hulthén potential (MUSVCH-P) are derived by using an approximation method to the centrifugal potential term in the symmetries of relativistic noncommutative three-dimensional real space (RNC: 3D-RS). The new analytical expressions for eigenvalues of the energy spectrum and the new mass of mesons, such as charmonium and bottomonium that have the quark and antiquark flavor, have been estimated by using Bopp’s shift method, and perturbation theory. The energy state equation depends on the global parameters characterizing the noncommutativity space and the potential parameter \((v_0, s_0, v_1, s_1, m_0, m_1, \delta)\) in addition to the Gamma function and the discreet atomic quantum numbers \((j, l, s, m)\). The expression for the new energy spectra is applied to obtain the new mass spectra of heavy quarkonium systems (charmonium and bottomonium) in the symmetries of (RNC: 3D-RS). The comparisons show that our theoretical results are in very good agreement with the reported works.

MSC:

81R60 Noncommutative geometry in quantum theory
81S10 Geometry and quantization, symplectic methods
53D55 Deformation quantization, star products
11M55 Relations with noncommutative geometry
14A22 Noncommutative algebraic geometry
81T75 Noncommutative geometry methods in quantum field theory
Full Text: DOI

References:

[1] Hulthén, H.Uber die Eigenlösungen der Schrödinger chung des DeutronsArk. Mat. Astron. Fys. A2819425(Also: 29B, 1) · Zbl 0026.38404
[2] Onyeaju, M. C.Idiodi, J. O. A.Ikot, A. N.Solaimani, MHassanabadi, H.Linear and nonlinear optical properties in spherical quantum dots: Generalized Hulthén potentialFew-Body Syst.572016793805https://doi.org/10.1007/s00601-016-1110-4
[3] Hosseinpour, M.Andrade, F. M.Silva, E. O.Hassanabadi, H.Scattering and bound states for the Hulthén Potential in a cosmic string backgroundEur. Phys. J. C772017270https://doi.org/10.1140/epjc/s10052-017-4834-5
[4] Hulthén, L.Sugawara, M.The two-nucleon problemStructure of Atomic Nuclei/Bau der Atomkerne, Encyclopedia of Physics/Handbuch der Physik8/39SpringerBerlin, Heidelberg1957https://doi.org/10.1007/978-3-642-45872-9_1
[5] Tietz, T.Negative hydrogen ionJ. Chem. Phys.355196119171918https://doi.org/10.1063/1.1732187
[6] Lam, C. S.Varshni, Y. P.Bound eigenstates of the exponential cosine screened Coulomb potentialPhys. Rev. A64197213911399https://doi.org/10.1103/physreva.6.1391
[7] Pyykkō, P.Relativistic theory of nuclear spin-spin coupling in moleculesChem. Phys.2221977289296https://doi.org/10.1016/0301-0104(77)87013-4
[8] Bayrak, O.Boztosun, I.Bound state solutions of the Hulthén potential by using the asymptotic iteration methodPhys. Scr.76120079296https://doi.org/10.1088/0031-8949/76/1/016 · Zbl 1138.81376
[9] Varshni, Y. P.Eigenenergies and oscillator strengths for the Hnlthen potentialPhys. Rev. A4119904682https://doi.org/10.1103/PhysRevA.41.4682
[10] Durand, B.Durand, L.Duality for heavy-quark systemsPhys. Rev. D235198110921102https://doi.org/10.1103/physrevd.23.1092
[11] Obu, J. A.Okoi, P. O.Okorie, U. S.Relativistic and nonrelativistic treatment of Hulthén-Kratzer potential model in D-dimensionsIndian J Phy.952019505514https://doi.org/10.1007/s12648-019-01638-w
[12] Ikhdair, S. M.Sever, R.Approximate eigenvalue and eigenfunction solutions for the generalized Hulthén potential with any angular momentumJ. Math. Chem.4232006461471https://doi.org/10.1007/s10910-006-9115-8 · Zbl 1132.81352
[13] Antia, A. D.Ikot, A. N.Akpan, I. O.Awoga, O. A.Approximate solutions of the Klein-Gordon equation with unequal scalar and vector modified Hylleraas potentialIndian J. Phys.8722012155160https://doi.org/10.1007/s12648-012-0210-3
[14] Ikot, A. N.Akpabio, L. E.Uwah, E. J.Bound state solutions of the Klein-Gordon equation with the Hulthén potentialElectron. J. Theor. Phys.82011225
[15] Saad, N.The Klein-Gordon equation with a generalized Hulthén potential in D-dimensionsPhys. Scr.7662007623627https://doi.org/10.1088/0031-8949/76/6/005 · Zbl 1134.81363
[16] Agboola, D.Comment on The Klein-Gordon equation with a generalized Hulthén potential in D dimensionsPhys. Scr.8162010067001https://doi.org/10.1088/0031-8949/81/06/067001 · Zbl 1277.81041
[17] Stanek, J.Approximate analytical solutions for arbitrary \(l\) Cent. Eur. J. Chem.92011737742https://doi.org/10.2478/s11532-011-0050-6
[18] Ahmadov, A. I.Aslanova, S. M.Orujova, M. S.Badalov, S. V.Dong, S. H.Approximate bound state solutions of the Klein-Gordon equation with the linear combination of Hulthén and Yukawa potentialsPhys. Lett. A383201930103017https://doi.org/10.1016/j.physleta.2019.06.043 · Zbl 1476.81031
[19] Ahmadov, H. I.Qocayeva, M. V.Huseynova, N. S.The bound state solutions of the D-dimensional Schrödinger equation for the Hulthén potential within SUSY quantum mechanicsInt. J. Mod. Phys. E260520171750028https://doi.org/10.1142/s0218301317500288
[20] Maireche, A.Modified unequal mixture scalar vector Hulthén-Yukawa potentials model as a quark-antiquark interaction and neutral atoms via relativistic treatment using the improved approximation of the centrifugal term and Bopp’s shift methodFew-Body Syst.61202030https://doi.org/10.1007/s00601-020-01559-z
[21] Maireche, A.Bound state solutions of Klein-Gordon and Schrodinger equations with linear combination of Hulthen and Kratzer potentialsAfr. Rev Phys.15320201931
[22] Chen, C. Y.Sun, D. S.Lu, F. L.Approximate analytical solutions of Klein-Gordon equation with Hulthén potentials for nonzero angular momentumPhys. Lett. A3703-42007219221https://doi.org/10.1016/j.physleta.2007.05.079 · Zbl 1209.81094
[23] Niehaus, A.Spontaneous electron emission from slow atomic collisionsPhys. Rep.18641990149214https://doi.org/10.1016/0370-1573(90)90007-o
[24] Sulzer, M. P.González, S.The effect of electron Coulomb collisions on the incoherent scatter spectrum in the Fregion at JicamarcaJ. Geophys. Res.104A1019992253522551https://doi.org/10.1029/1999ja900288
[25] Onate, C. A.Ogunlesi, O.Odeyemi, O. M.Odeyemi, O. E.Approximate solutions of the effective mass Klein-Gordon equation for unequal potentialsJ. Theor. Appl. Phys.142019142151
[26] Onate, C. A.Approximate solutions of the non-relativistic schrodinger equation with an interaction of Coulomb and Hulthen potentialsSOP Tran. Theor. Phys.122014118127
[27] Ma, Z. Q.Dong, S. H.Gu, X. Y.Yu, J.Cassou, M. L.The Klein-Gordon equation with a Coulomb plus scalar potential in D dimensionsInt. J. Mod. Phys. E13032004597610https://doi.org/10.1142/s0218301304002338
[28] Capozziello, S.Lambiase, G.Scarpetta, G.Generalized uncertainty principle from quantum geometryInt. J. Theor. Phys.3920001522https://doi.org/10.1023/A:1003634814685 · Zbl 0981.83021
[29] Doplicher, S.Fredenhagen, K.Roberts, J. E.Spacetime quantization induced by classical gravityPhys. Lett. B3311-219943944https://doi.org/10.1016/0370-2693(94)90940-7
[30] Witten, E.Refection on the fate spacetimePhys. Today49419962430https://doi.org/10.1063/1.881493
[31] Kempf, A.Mangano, G.Mann, R. B.Hilbert space representation of the minimal length uncertainty relationPhys. Rev. D522199511081118https://doi.org/10.1103/physrevd.52.1108
[32] Scardigli, F.Some heuristic semi-classical derivations of the Planck length, the Hawking effect and the Unruh effectIl Nuovo Cimento B Ser.119199510291034https://doi.org/10.1007/bf02726152
[33] Adler, R. J.Santigo, D. I.On gravity and the uncertainty principalMod. Phys. Lett. A1420199913711381https://doi.org/10.1142/s0217732399001462
[34] Kanazawa, T.Lambiase, G.Vilasi, G.Yoshioka, A.Noncommutative Schwarzschild geometry and generalized uncertainty principleEur. Phys. J. C7922019https://doi.org/10.1140/epjc/s10052-019-6610-1
[35] Scardigli, F.Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experimentPhys. Lett. B4521-219993944https://doi.org/10.1016/s0370-2693(99)00167-7
[36] Maireche, A.Nonrelativistic treatment of Hydrogen-like and neutral atoms subjected to the generalized perturbed Yukawa potential with centrifugal barrier in the symmetries of noncommutative quantum mechanicsInt. J. Geom. Methods Mod. Phys.17520202050067https://doi.org/10.1142/S021988782050067X
[37] Ho, P. M.Kao, H. C.Noncommutative quantum mechanics from noncommutative quantum field theoryPhys. Rev. Lett.88152002https://doi.org/10.1103/physrevlett.88.151602
[38] Gnatenko, P.Parameters of noncommutativity in Lie-algebraic noncommutative spacePhys. Rev. D9922019026009-1https://doi.org/10.1103/physrevd.99.026009
[39] Maireche, A.A new model for describing heavy-light mesons in the extended nonrelativistic Quark model under a new modified potential containing Cornell, Gaussian and inverse square terms in the symmetries of NCQMPhys. J.32019197215
[40] Bertolami, O.Rosa, J. G.Dearagao, C. M. L.Castorina, P.Zappala, D.Scaling of variables and the relation between noncommutative parameters in noncommutative quantum mechanicsMod. Phys. Lett. A21102006795802https://doi.org/10.1142/s0217732306019840
[41] Maireche, A.A recent study of excited energy levels of diatomics for modified more general exponential screened Coulomb potential: Extended quantum mechanicsJ. Nano-Electron. Phys.93201703021https://doi.org/10.21272/jnep.9(3).03021
[42] Djemaï, E. F.Smail, H.On quantum mechanics on noncommutative quantum phase spaceCommun. Theor. Phys.4162004837844https://doi.org/10.1088/0253-6102/41/6/837 · Zbl 1167.81422
[43] Yi, Y.Kang, L.Jian-Hua, W.Chi-Yi, C.Spin-1/2 relativistic particle in a magnetic field in NC phase spaceChin. Phys. C3452010543547https://doi.org/10.1088/1674-1137/34/5/005
[44] Bertolami, O.Leal, P.Aspects of phase-space noncommutative quantum mechanicsPhys. Lett. B7502015611https://doi.org/10.1016/j.physletb.2015.08.024 · Zbl 1364.81158
[45] Bastos, C.Bertolami, O.Dias, N. C.Prata, J. N.Weyl-Wigner formulation of noncommutative quantum mechanicsJ. Math. Phys.4972008072101https://doi.org/10.1063/1.2944996 · Zbl 1152.81330
[46] Zhang, J.Fractional angular momentum in non-commutative spacesPhys. Lett. B5841-22004204209https://doi.org/10.1016/j.physletb.2004.01.049 · Zbl 1246.81083
[47] Gamboa, J.Loewe, M.Rojas, J. C.Noncommutative quantum mechanicsPhys. Rev. D642001067901https://doi.org/10.1103/PhysRevD.64.067901 · Zbl 1138.81384
[48] Chaichian, M.Sheikh-JabbariTureanu, A.Hydrogen atom spectrum and the lamb shift in noncommutative QEDPhys. Rev. Lett.8613200127162719https://doi.org/10.1103/physrevlett.86.2716
[49] Maireche, A.Nonrelativistic bound state solutions of the modified 2D-killingbeck potential involving 2D-killingbeck potential and some central terms for hydrogenic atoms and quarkonium systemJ. Nano-Electron. Phys.114201904024https://doi.org/10.21272/jnep.11(4).04024
[50] Maireche, A.New bound state energies for spherical quantum dots in presence of a confining potential model at nano and Plank’s scalesNanoWorld J.142016122129https://doi.org/10.17756/nwj.2016-016
[51] De Andrade, M. A.Neves, C.Noncommutative mapping from the symplectic formalismJ. Math. Phys.5912018012105https://doi.org/10.1063/1.4986964 · Zbl 1380.81170
[52] Abreu, E. M. C.Neves, C.Oliveira, W.Noncommutativity from the symplectic point of viewInt. J. Mod. Phys. A2120065359https://doi.org/10.1142/s0217751x06034094 · Zbl 1108.81047
[53] Abreu, E. M. C.Neto, J. A.Mendes, A. C. R.Neves, C.Oliveira, W.Marcial, M. V.Lagrangian formulation for noncommutative nonlinear systemsInt. J. Mod. Phys. A2720121250053https://doi.org/10.1142/s0217751x12500534 · Zbl 1247.81221
[54] L. Mezincescu, Star operation in quantum mechanics, arXiv:hep-th/0007046v2 · Zbl 1180.81067
[55] Wang, J.Li, K.The HMW effect in noncommutative quantum mechanicsJ. Phys. A409200721972202https://doi.org/10.1088/1751-8113/40/9/021 · Zbl 1113.81080
[56] Li, K.Wang, J.The topological AC effect on non-commutative phase spaceEur. Phys. J. C504200710071011https://doi.org/10.1140/epjc/s10052-007-0256-0 · Zbl 1191.81182
[57] Maireche, A.New nonrelativistic bound state solutions of the NGECSC potential involving GECSC potential and new central terms for hydrogen atomAfr. Rev. Phys.13232018142149
[58] Maireche, A.A new nonrelativistic investigation for the lowest excitations states of interactions in one-electron atoms, Muonic, Hadronic and Rydberg atoms with modified inverse power potentialInt. Front. Sci. Lett.920163346https://doi.org/10.18052/www.scipress.com/IFSL.9.33
[59] Maireche, A.A theoretical investigation of nonrelativistic bound state solution at finite temperature using the sum of modified Cornell plus inverse quadratic potentialSri Lankan J. Phys.2120201135http://DOI.org/10.4038/sljp.v20i0
[60] Alhaidari, A. D.Bahlouli, H.Al-Hasan, A.Dirac and Klein-Gordon equations with equal scalar and vector potentialsPhys. Lett. A3491-420068797https://doi.org/10.1016/j.physleta.2005.09.008 · Zbl 1195.81043
[61] Maireche, A.A theoretical investigation of the Schrödinger equation for a modified two-dimensional purely sextic double-well potentialYJES1620184154
[62] Maireche, A.Extended of the Schrödinger equation with new Coulomb potentials plus linear and harmonic radial terms in the symmetries of noncommutative quantum mechanicsJ. Nano- Electron. Phys.106201806015-1https://doi.org/10.21272/jnep.10(6).06015
[63] Maireche, A.The Klein-Gordon equation with modified Coulomb plus inverse-square potential in the noncommutative three-dimensional spaceMod. Phys. Lett. A3552020052050015https://doi.org/10.1142/s0217732320500157 · Zbl 1431.81079
[64] Maireche, A.The Klein-Gordon equation with modified Coulomb potential plus inverse-square-root potential in three-dimensional noncommutative spacePhys. J.32019186196
[65] Motavalli, H.Akbarieh, A. R.Klein-Gordon equation for the Coulomb potential in noncommutative spaceMod. Phys. Lett. A2529201025232528https://doi.org/10.1142/s0217732310033529 · Zbl 1202.81121
[66] Darroodi, M.Mehraban, H.Hassanabadi, H.The Klein-Gordon equation with the Kratzer potential in the noncommutative spaceMod. Phys. Lett. A333520181850203https://doi.org/10.1142/s0217732318502036 · Zbl 1402.81179
[67] Saidi, A.Sedra, M. B.Spin-one (1 + 3)-dimensional DKP equation with modified Kratzer potential in the non-commutative spaceMod. Phys. Lett. A35520192050014https://doi.org/10.1142/s0217732320500145 · Zbl 1431.81155
[68] Maireche, A.Solutions of Klein-Gordon equation for the modified central complex potential in the symmetries of noncommutative quantum mechanicsSri Lankan J. Phys.2212021119http://doi.org/10.4038/sljp.v22i1.8079
[69] Maireche, A.Theoretical investigation of the modified screened cosine Kratzer potential via relativistic and nonrelativistic treatment in the NCQM symmetriesLat. Am. J. Phys. Educ.14320203310-1
[70] Maireche, A.A model of modified Klein-Gordon equation with modified scalar-vector Yukawa potentialAfr. Rev. Phys.15120201931
[71] Gouba, L.A comparative review of four formulations of noncommutative quantum mechanicsInt. J. Mod. Phys. A311920161630025https://doi.org/10.1142/s0217751x16300258 · Zbl 1344.81005
[72] Bopp, F.La mécanique quantique est-elle une mécanique statistique classique particulièreAnn. Inst. Henri Poincaré15195681 · Zbl 0072.44203
[73] Badawi, M.Bessis, N.Bessis, G.On the introduction of the rotation-vibration coupling in diatomic molecules and the factorization methodJ. Phys. B581972L157L159https://doi.org/10.1088/0022-3700/5/8/004
[74] Greene, R. L.Aldrich, C.Variational wave functions for a screened Coulomb potentialPhys. Rev. A146197623632366https://doi.org/10.1103/physreva.14.2363
[75] Dong, S. H.Qiang, W. C.Sun, G. H.Bezerra, V. B.Analytical approximations to the l-wave solutions of the Schrödinger equation with the Eckart potentialJ. Phys. A403420071053510540https://doi.org/10.1088/1751-8113/40/34/010 · Zbl 1120.81024
[76] Onate, A. C.Ikot, A. N.Onyeaju, M. C.Ebomwonyi, O.Dirac equation with unequal scalar and vector potentials under spin and pseudospin symmetrySri Lankan J. Phys.19120181736http://doi.org/10.4038/sljp.v19i1.8043 · Zbl 1452.81102
[77] Hamzavi, M.Thylwe, K. E.Rajabi, A. A.Approximate bound states solution of the Hellmann potentialCommun. Theor. Phys.60201318https://doi.org/http://doi.org/10.1088/0253-6102/60/1/01.52 · Zbl 1284.81114
[78] Oluwadare, O. J.Thylwe, K. E.Oyewumi, K. J.Non-relativistic phase shifts for Scattering on generalized radial Yukawa potentialCommun. Theor. Phys.652016434440http://doi.org/10.1088/0253-6102/65/4/434.53 · Zbl 1337.81050
[79] Qiang, W. C.Dong, S. H.Analytical approximations to the solutions of the Manning-Rosen potential with centrifugal termPhys. Lett. A3681-220071317https://doi.org/10.1016/j.physleta.2007.03.057 · Zbl 1209.81107
[80] Qiang, W. C.Dong, S. H.The Manning-Rosen potential studied by a new approximate scheme to the centrifugal termPhys. Scr.7942009045004https://doi.org/10.1088/0031-8949/79/04/045004 · Zbl 1170.81512
[81] Wei, G.Zhen, Z.Dong, S.The relativistic bound and scattering states of the Manning-Rosen potential with an improved new approximate scheme to the centrifugal termCentr. Eur. J. Phys.72009175183https://doi.org/10.2478/s11534-008-0143-9
[82] Gradshteyn, S.Ryzhik, I. M.Table of Integrals, Series and ProductsJeffrey, A.Zwillinger, D.7ElsevierAmsterdam2007 · Zbl 1208.65001
[83] Abu-Shady, M.Abdel-Karim, T. A.Ezz-Alarab, S. Y.Masses and thermodynamic properties of heavy mesons in the non-relativistic quark model using the Nikiforov-Uvarov methodJ. Egypt Math. Soc.27201914https://doi.org/10.1186/s42787-019-0014-0 · Zbl 1427.81183
[84] Abu-Shady, M.Ezz-Alarab, S. Y.Trigonometric Rosen-Morse potential as a quark-antiquark interaction potential for meson properties in the non-relativistic quark model using EAIMFew-Body Syst.6042019https://doi.org/10.1007/s00601-019-1531-y
[85] Maksimenko, N. V.Kuchin, S. M.Electric polarizability of pions in semirelativistic quark modelPhys. Part. Nucl. Lett.922012134138https://doi.org/10.1134/s1547477112020112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.