×

Global existence of solutions of a loglog energy-supercritical Klein-Gordon equation. (English) Zbl 07818456

Summary: We prove global existence of the solutions of the loglog energy-supercritical Klein-Gordon equation \(\partial_{tt} u - \triangle u + u = -|u|^{\frac{4}{n - 2}} u \log^{\gamma} \Big(\log(10 + |u|^2) \Big)\), with \(n \in \{3, 4, 5\}\), \(0 < \gamma < \gamma_n\), and data \((u_0, u_1) \in H^k \times H^{k - 1}\) for \(k > 1\) (resp. \(\frac{7}{3} > k > 1\)) \(if n \in \{3, 4\}\) (resp. \(n = 5\)). The proof is by contradiction. Assuming that blow-up occurs at a maximal time of existence, we perform an analysis close to this time in order to find a finite bound of a Strichartz-type norm, which eventually leads to a contradiction with the blow-up assumption.

MSC:

47-XX Operator theory
34-XX Ordinary differential equations

References:

[1] Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 343, p. 523. Springer (2011) · Zbl 1227.35004
[2] Bourgain, J., Global well-posedness of defocusing critical NLS in the radial case, JAMS, 12, 1, 145-171, 1999 · Zbl 0958.35126
[3] Bulut, A., Dodson, B.: Global well-posedness for the logarithmically energy-supercritical nonlinear wave equation with partial symmetry, preprint · Zbl 1473.35362
[4] Duyckaerts, T.; Roy, T., Blow-up of the critical Sobolev norm for nonscattering radial solutions of supercritical wave equations on \({\mathbb{R}}^3 \), Bull. Soc. Math. France, 145, 3, 503-573, 2017 · Zbl 1395.35042 · doi:10.24033/bsmf.2746
[5] Hsi-Wei, S., Some results on scattering for log-subcritical and log-supercritical nonlinear wave equations, Anal. PDE, 6, 1, 1-24, 2013 · Zbl 1280.35079 · doi:10.2140/apde.2013.6.1
[6] Morawetz, C.; Strauss, W., Decay and scattering of solutions of a nonlinear relativistic wave equation, Commun. Pure Appl. Math., 25, 1-31, 1972 · Zbl 0228.35055 · doi:10.1002/cpa.3160250103
[7] Nakanishi, K., Scattering theory for the nonlinear Klein-Gordon equations with Sobolev critical power, Int. Math. Res. Notices, 1, 31-60, 1999 · Zbl 0933.35166 · doi:10.1155/S1073792899000021
[8] Nakanishi, K., Unique global existence and asymptotic behavior of solutions for wave equations, Commun. Partial Differ. Equ., 24, 1-2, 185-221, 1999 · Zbl 0926.35022 · doi:10.1080/03605309908821420
[9] Roy, T.: Scattering above energy norm of solutions of a loglog energy-supercritical Schrödinger equation with radial data. J. Differ. Equ. 250(1), 292-319 (2011). Corrigendum 264(9), 6013-6024 (2018) · Zbl 1205.35296
[10] Roy, T.: Scattering above energy norm of a focusing size-dependent log energy-supercritical Schrödinger equation with radial data below ground state, preprint · Zbl 1490.35446
[11] Roy, T., On Jensen-type inequalities for nonsmooth radial scattering solutions of a loglog energy-supercritical Schrödinger equation, Int. Math. Res. Not., 2020, 8, 2501-2541, 2020 · Zbl 1434.35028 · doi:10.1093/imrn/rny045
[12] Roy, T., Global existence of smooth solutions to a 3D loglog energy-supercritical wave equation, Anal. PDE, 2, 3, 261-280, 2009 · Zbl 1195.35222 · doi:10.2140/apde.2009.2.261
[13] Shatah, J.; Struwe, M., Geometric Wave Equations, Courant Lecture Notes in Mathematics, 1998, Providence: American Mathematical Society, New York University, Courant Institute of Mathematical Sciences, Providence · Zbl 0993.35001
[14] Strauss, W., Nonlinear Wave Equations, CMRS Regional Conferences Series in Mathematics, 1989, Prividence: American Mathematical Society, Prividence · Zbl 0714.35003
[15] Tao, T., Global regularity for a logarithmically supercritical defocusing nonlinear wave equation for spherically symmetric data, J. Hyperbolic Differ. Equ., 4, 2, 259-265, 2007 · Zbl 1124.35043 · doi:10.1142/S0219891607001124
[16] Taylor, M.: Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs, vol. 81. AMS, Providence (2000) · Zbl 0963.35211
[17] Yeh, J.: Real Analysis, Theory of Measure and Integration, 3rd edn. World Scientific (2014) · Zbl 1301.26002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.