×

Polyhedral points, QP-points and Q-points. (English) Zbl 07812640

In the present paper the relation between polyhedral points, \(QP\)-points and \(Q\)-points of the unit sphere of a Banach space is studied.
A Banach space is said to be polyhedral if the closed unit ball of every finite dimensional subspace is a polygon. According to [R. Durier and P. L. Papini, Rocky Mt. J. Math. 23, No. 3, 863–875 (1993; Zbl 0799.46015)], a Banach space \(X\) is polyhedral if and only if each point of \(B_X\) is a polyhedral point. A Banach space is a \(QP\)-space (\(Q\)-space, resp.) if each point of its unit sphere is a \(QP\)-point (\(Q\)-point, resp.). In [D. Amir and F. Deutsch, J. Approx. Theory 6, 176–201 (1972; Zbl 0238.41014)], it was proved that a \(QP\)-space is a Polyhedral space.
In Theorem 2.7, the authors prove the local version of the previous result: for a point \(x\) in the unit sphere of a Banach space, it holds that \[ x \mbox{ is a QP-point}\Rightarrow x \mbox{ is a polyhedral point}\Rightarrow x \mbox{ is a Q-point}. \] In Section 2, it is also proved that the last implication can be reversed if in addition the point \(x\) is a weakly polyhedral point of the unit sphere.
In Section 3 it is proved the local version of some results contained in [L. Veselý, Extr. Math. 15, No. 1, 213–217 (2000; Zbl 0987.46019)]. In particular, it is proved that if \(x\) is a polyhedral point of the unit sphere of a Banach space, \(x\) is a Gâteaux smooth point if and only if the relative interior of a maximal face of \(B_X\) contains \(x\).
Finally, Section 4 contains some geometrical properties of polyhedral points.

MSC:

46B20 Geometry and structure of normed linear spaces
52A01 Axiomatic and generalized convexity
52A07 Convex sets in topological vector spaces (aspects of convex geometry)
Full Text: DOI

References:

[1] Abrahamsen, T.; Lima, V.; Martiny, A., Delta-points in Banach spaces generated by adequate families, Illinois J. Math., 66, 421-434, (2022) · Zbl 1506.46008 · doi:10.1215/00192082-10123638
[2] Amir, D.; Deutsch, F., Suns, moons, and quasi-polyhedra, J. Approx. Theory, 6, 176-201, (1972) · Zbl 0238.41014 · doi:10.1016/0021-9045(72)90073-1
[3] Bastiani, A.: Pyramides topologiques. Applications a l’analyse. C. R. Acad. Sci. Paris. 248, 175-178 (1959) · Zbl 0089.09203
[4] Bastiani, A., Cones convexes et pyramides convexes, Ann. Inst. Fourier (Grenoble), 9, 249-292, (1959) · Zbl 0096.08002 · doi:10.5802/aif.92
[5] Casini, E.; Miglierina, E.; Piasecki, L.; Vesely, L., Rethinking polyhedrality for Lindenstrauss spaces, Israel J. Math., 216, 355-369, (2016) · Zbl 1372.46015 · doi:10.1007/s11856-016-1412-8
[6] De Bernardi, C., Extreme points in polyhedral Banach spaces, Israel J. Math., 220, 547-557, (2017) · Zbl 1384.46003 · doi:10.1007/s11856-017-1539-2
[7] Deutsch, F.: On some geometric properties of the unit sphere. In: Linear Operators and Approximation, pp. 186-195 (1972). doi:10.1007/978-3-0348-7283-6_18 · Zbl 0253.46030
[8] Deutsch, F.; Lindahl, R., Minimal extremal subsets of the unit sphere, Math. Ann., 197, 251-278, (1972) · Zbl 0223.46020 · doi:10.1007/bf01428200
[9] Deville, R.; Godefroy, G.; Zizler, V., Smoothness and Renormings in Banach Spaces, (1993), Hoboken: Wiley, Hoboken · Zbl 0782.46019
[10] Dey, S.; Mal, A.; Paul, K., k-smoothness on polyhedral Banach spaces, Colloq. Math., 169, 25-37, (2022) · Zbl 1501.46015 · doi:10.4064/cm8520-4-2021
[11] Durier, R.; Papini, P., Polyhedral norms in an infinite-dimensional space, Rocky Mountain J. Math., 23, 863-875, (1993) · Zbl 0799.46015 · doi:10.1216/rmjm/1181072528
[12] Engelking, R., General Topology, (1989), Berlin: Heldermann, Berlin · Zbl 0684.54001
[13] Fonf, V.; Vesely, L., Infinite-dimensional polyhedrality, Canad. J. Math., 56, 472-494, (2004) · Zbl 1068.46007 · doi:10.4153/cjm-2004-022-7
[14] Fonf, V.; Lindenstrauss, J.; Vesely, L., Best approximation in polyhedral Banach spaces, J. Approx. Theory, 163, 1748-1771, (2011) · Zbl 1229.41027 · doi:10.1016/j.jat.2011.06.011
[15] Fonf, V.; Pallares, A.; Smith, R.; Troyanski, S., Polyhedrality in pieces, J. Funct. Anal., 266, 247-264, (2014) · Zbl 1312.46014 · doi:10.1016/j.jfa.2013.10.007
[16] Fonf, V.; Smith, R.; Troyanski, S., Boundaries and polyhedral Banach spaces, Proc. Amer. Math. Soc., 143, 4845-4849, (2015) · Zbl 1331.46007 · doi:10.1090/proc/12644
[17] Godefroy, G.; Indumathi, V., Strong proximinality and polyhedral spaces, Rev. Mat. Complut., 14, 105-125, (2001) · Zbl 0993.46004 · doi:10.5209/rev_rema.2001.v14.n1.17047
[18] Granero, A.; Jimenez Sevilla, M.; Moreno, J., Geometry of Banach spaces with property \(\beta \), Israel J. Math., 111, 263-273, (1999) · Zbl 0936.46016 · doi:10.1007/bf02810687
[19] Indumathi, V., Metric projections and polyhedral spaces, Set Valued Anal., 15, 239-250, (2007) · Zbl 1133.46008 · doi:10.1007/s11228-006-0036-2
[20] Klee, V., Some characterizations of convex polyhedra, Acta Math., 102, 79-107, (1959) · Zbl 0094.16802 · doi:10.1007/bf02559569
[21] Klee, V., Polyhedral sections of convex bodies, Acta Math., 103, 243-267, (1960) · Zbl 0148.16203 · doi:10.1007/bf02546358
[22] Lindenstrauss, J., Notes on Klee’s paper: “Polyhedral sections of convex bodies”, Israel J. Math., 4, 235-242, (1966) · Zbl 0148.11301 · doi:10.1007/bf02771638
[23] Livni, R., On extreme points of the dual ball of a polyhedral space, Extracta Math., 24, 243-249, (2009) · Zbl 1209.46006
[24] Lopez-Perez, G.; Rueda Zoca, A., Diameter two properties and polyhedrality, RACSAM. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 113, 131-135, (2019) · Zbl 1416.46013 · doi:10.1007/s13398-017-0458-8
[25] Mal, A., Paul, K., Dey, S.: Characterization of extreme contractions through k-smoothness of operators. In: Linear Multilinear Algebra, pp. 1-15 (2021). doi:10.1080/03081087.2021.1913086
[26] Soltan, V., Local conicity and polyhedrality of convex sets, Results Math., 77, 188, (2022) · Zbl 1502.52006 · doi:10.1007/s00025-022-01723-3
[27] Tan, D.; Huang, X., The Wigner property for CL-spaces and finite-dimensional polyhedral Banach spaces, Proc. Edinb. Math. Soc., 2, 64, 183-199, (2021) · Zbl 1472.46016 · doi:10.1017/s0013091521000079
[28] Vesely, L., Boundary of polyhedral spaces: an alternative proof, Extracta Math., 15, 213-217, (2000) · Zbl 0987.46019
[29] Vesely, L., Polyhedral direct sums of Banach spaces, and generalized centers of finite sets, J. Math. Anal. Appl., 391, 466-479, (2012) · Zbl 1245.46010 · doi:10.1016/j.jmaa.2012.02.048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.