×

Stability and convergence of stepsize-dependent linear multistep methods for nonlinear dissipative evolution equations in Banach space. (English) Zbl 07806675

Summary: Stability and global error bounds are studied for a class of stepsize-dependent linear multistep methods for nonlinear evolution equations governed by \(\omega\)-dissipative vector fields in Banach space. To break through the order barrier \(p\leq 1\) of unconditionally contractive linear multistep methods for dissipative systems, strongly dissipative systems are introduced. By employing the error growth function of the methods, new contractivity and convergence results of stepsize-dependent linear multistep methods on infinite integration intervals are provided for strictly dissipative systems \((\omega <0)\) and strongly dissipative systems. Some applications of the main results to several linear multistep methods, including the trapezoidal rule, are supplied. The theoretical results are also illustrated by a set of numerical experiments.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65J08 Numerical solutions to abstract evolution equations

Software:

RODAS
Full Text: DOI

References:

[1] G. Akrivis and M. Crouzeix, Linearly implicit methods for nonlinear parabolic equations, Math. Comp., 73 (2004), 613-635. · Zbl 1045.65079
[2] G. Akrivis and C. Lubich, Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations, Numer. Math., 131 (2015), 713-735. · Zbl 1334.65124
[3] O. Axelsson and S. V. Gololobov, Stability and error estimates for the ϑ-method for strongly monotone and infinitely stiff evolution equations, Numer. Math., 89 (2001), 31-48. · Zbl 0994.65094
[4] V. Barbu, Nonlinear Semigroups and Differetnial Equations in Banach Space, Noordhoff Interna-tional Publisheing, Leyden, 1976. · Zbl 0328.47035
[5] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Space, Springer, New York, 2010. · Zbl 1197.35002
[6] H. Brezis and A. Pazy, Accretive sets and differential equations in Banach spaces, Israel J. Math., 8 (1970), 367-383. · Zbl 0209.45602
[7] K. Burrage and J.C. Butcher, Stability criteria for implicit Runge-Kutta methods, SIAM J. Nu-mer. Anal., 16 (1979), 46-57. · Zbl 0396.65043
[8] M.G. Crandall and T.M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298. · Zbl 0226.47038
[9] M.G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math., 11 (1972), 57-94. · Zbl 0249.34049
[10] M.G. Crandall and L.C. Evans, On the relation of the operator ∂/∂s + ∂/∂τ to evolution governed by accretive operators, Israel J. Math., 21 (1975), 261-278. · Zbl 0351.34037
[11] M.G. Crandall, Evolutionary equations: An introduction to evolution governed by accretive oper-ator, Dynamical Systems, eds. L. Cesari, J. K. Hale and J. P. LaSalle, Academic Press, 1 (1976), 131-165. · Zbl 0339.35049
[12] M.G. Crandall, Book reviews: Nonlinear semigroups and differetnial equations in Banach space by V. Barbu, Bull. Amer. Math. Soc., 84 (1978), 632-637.
[13] M.G. Crandall, Nonlinear semigroups and evolution governed by accretive operators, Proc. Sym-pos. Pure Math., 45 (1986), 305-337. · Zbl 0637.47039
[14] K. Dekker and J.G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland Publishing Co., Amsterdam, 1984. · Zbl 0571.65057
[15] E. Emmrich, Convergence of the variable two-step BDF time discretisation of nonlinear evolution problems governed by a monotone potential operator, BIT, 49 (2009), 297-323. · Zbl 1172.65026
[16] R. Frank, J. Schneid and C.W. Ueberhuber, Order results for implicit Runge-Kutta methods applied to stiff systems, SIAM J. Numer. Anal., 22 (1985), 515-534. · Zbl 0577.65056
[17] C. González, A. Ostermann, C. Palencia and M. Thalhammer, Backward Euler discretization of fully nonlinear parabolic problems, Math. Comp., 71 (2002), 125-145. · Zbl 0991.65087
[18] E. Hairer and M. Zennaro, On error growth functions of Runge-Kutta methods, Appl. Numer. Math., 22 (1996), 205-216. · Zbl 0871.65071
[19] E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, Second ed., Springer-Verlag, Berlin, 1996. · Zbl 0859.65067
[20] E. Hansen, Runge-Kutta time dscretizations of nonlinear dissipative evolution equations, Math. Comp., 75 (2005), 631-640. · Zbl 1098.65058
[21] E. Hansen, Convergence of multistep time dscretizations of nonlinear dissipative evolution equa-tions, SIAM J. Numer. Anal., 44 (2006), 55-65. · Zbl 1118.65055
[22] E. Hansen and T. Stillfjoud, Convergence of the implicit-explicit Euler scheme applied to perturbed dissipative evolution equations, Math. Comp., 82 (2013), 1975-1985. · Zbl 1282.65059
[23] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, Berlin, 1981. · Zbl 0456.35001
[24] J.F.B.M. Kraaijevanger, B-convergence of the implicit midpoint rule and the trapezoidal rule, BIT, 25 (1985), 482-528.
[25] J.F.B.M. Kraaijevanger, Contractivity of Runge-Kutta methods, BIT, 31 (1991), 482-528. · Zbl 0763.65059
[26] Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan, 27 (1975), 640-665. · Zbl 0313.34068
[27] W.S. WANG
[28] S.G. Krein and M.I. Khazan, Differential equations in a Banach space, J. Soviet Math., 30 (1985), 2154-2239. · Zbl 0611.34059
[29] S.F. Li, Numerical Analysis for Stiff Ordinary and Functional Differential Equations, Xiangtan University Press, Xiangtan, 2010.
[30] C. Lubich and A. Ostermann, Linearly implicit time discretization of non-linear parabolic equa-tions, IMA J. Numer. Anal., 15 (1995), 555-583. · Zbl 0834.65092
[31] O. Nevanlinna and W. Liniger, Contractive methods for stiff differential equations, Part II, BIT, 19 (1979), 53-72. · Zbl 0408.65046
[32] R.H. Nochetto and G. Savaré, Nonlinear evolution governed by accretive operators in Banach spaces: error control and applications, M3AS, 16 (2006), 439-477. · Zbl 1098.65092
[33] A. Ostermann and M. Thalhammer, Convergence of Runge-Kutta methods for nonlinear parabolic equations, Appl. Numer. Math., 42 (2002), 367-380. · Zbl 1004.65093
[34] A. Ostermann, M. Thalhammer and G. Kirlinger, Stability of linear multistep methods and ap-plications to nonlinear parabolic problems, Appl. Numer. Math., 48 (2004), 389-407. · Zbl 1041.65073
[35] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differetnial Equations, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[36] J. Sand, Circle contractive linear multistep methods, BIT, 26 (1986), 114-122. · Zbl 0594.65045
[37] J. Sand and S. Skelboe, Stability of backward Euler multirate methods and convergence of wave-form relaxation, BIT, 32 (1992), 350-366. · Zbl 0760.65086
[38] G. Savaré, Error estimates for dissipative evolution problems, Free Boundary Problems: Theory and Applications, eds. P. Colli et al., Birkhäuser, 147 (2004), 281-291. · Zbl 1054.65101
[39] R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical surveys and monographs, Vol. 49, AMS, 1996.
[40] G. Söderlind, On nonlinear difference and differential equations, BIT, 24 (1984), 667-680. · Zbl 0557.65043
[41] G. Söderlind, Bounds on nonlinear operators in finite-dimensional Banach spaces, Numer. Math., 50 (1986), 27-44. · Zbl 0585.47047
[42] G. Söderlind, The logarithmic norm. History and modern theory, BIT, 46 (2006), 631-652. · Zbl 1102.65088
[43] M.N. Spijker, Contractivity in the numerical solution of initial value problems, Numer. Math., 42 (1983), 271-290. · Zbl 0504.65030
[44] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer, Berlin, 2006. · Zbl 1105.65102
[45] T. Takahashi, Semigroups of nonlinear operators and invariant sets, Hiroshima Math. J., 10 (1980), 55-67. · Zbl 0434.47053
[46] R. Vanselow, Nonlinear stability behaviour of linear multistep methods, BIT, 23 (1983), 388-396. · Zbl 0516.65061
[47] W.S. Wang, L.P. Wen and S.F. Li, Nonlinear stability of θ-methods for neutral differential equa-tions in Banach space, Appl. Math. Comput. 198 (2008), 742-753. · Zbl 1167.65030
[48] W.S. Wang and C.J. Zhang, Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space, Numer. Math., 115 (2010), 451-474. · Zbl 1193.65140
[49] W.S. Wang and S.F. Li, Efficient stability-preserving numerical methods for nonlinear coercive problems in vector space, SIAM J. Numer. Anal., Accepted, https://doi.org/10.1137/21M1443273. · Zbl 1529.65044 · doi:10.1137/21M1443273
[50] L.P. Wen, W. S. Wang, Y.X. Yu and S.F. Li, Nonlinear stability and asymptotic stability of implicit Euler method for stiff Volterra functional differential equations in Banach spaces, Appl. Math. Comput., 198 (2008), 582-591. · Zbl 1142.65065
[51] L.P. Wen, Y.X. Yu and S.F. Li, Stability and asymptotic stability of θ-methods for nonlinear stiff Volterra functional differential equations in Banach spaces, J. Comput. Appl. Math., 230 (2009), 351-359. · Zbl 1175.65089
[52] E. Zeldler, Nonlinear Functional Analysis and its Applications. II/B. Nonlinear Monotone Oper-ators, Second ed., Springer-Verlag, New York, 1990. · Zbl 0684.47029
[53] C.J. Zhang and X. X. Liao, D-convergence and stability of a class of linear multistep methods for nonlinear DDEs, J. Comput. Math., 18 (2000), 199-206. · Zbl 0956.65067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.