×

Primes in coverings of indecomposable involutive set-theoretic solutions to the Yang-Baxter equation. (English) Zbl 07789451

During the talk “Skew Braces and the Yang-Baxter Equation” held in Oberwolfach in the period 26 February–4 March 2023, Okniński raised the question of whether the primes dividing the size \(n\) of a finite indecomposable solution are related to the primes dividing the order of the associated permutation group. In the paper [Adv. Math. 430, Article ID 109221, 26 p. (2023; Zbl 1531.16029)], F. Cedó and J. Okniński proved that both prime sets are equal if \(n\) is square-free.
In this paper, the author proves that surjective morphisms of solutions admit a canonical factorization into a covering and a morphism given by an ideal of a brace. The problem of the existence of solutions with non-equality of the prime sets is reduced to the retractability problem. In addition, it is shown that the case of non-equality is possible, and an example is constructed.

MSC:

16T25 Yang-Baxter equations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
08A05 Structure theory of algebraic structures

Citations:

Zbl 1531.16029

References:

[1] I. Angiono, C. Galindo, L. Vendramin: Hopf braces and Yang-Baxter opera-tors, Proc. Amer. Math. Soc. 145 (2017), 1981-1995. · Zbl 1392.16032
[2] D. Bachiller: Counterexample to a conjecture about braces, J. Algebra 453 (2016), 160-176. · Zbl 1338.16022
[3] D.Bachiller: Extensions, matched products, and simple braces, J. Pure Appl. Algebra 222 (2018), 1670-1691. · Zbl 1437.20031
[4] F. Catino, I. Colazzo, P. Stefanelli: On regular subgroups of the affine group, Bull. Aust. Math. Soc. 91 (2015), 76-85. · Zbl 1314.20001
[5] F. Catino, R. Rizzo: Regular subgroups of the affine group and radical circle algebras, Bull. Aust. Math. Soc. 79 (2009), 103-107. · Zbl 1184.20001
[6] F. Cedó, E. Jespers, J. Okniński: Retractability of set theoretic solutions of the Yang-Baxter equation, Adv. Math. 224 (2010), 2472-2484. · Zbl 1192.81202
[7] F. Cedó, E. Jespers,Á. del Río: Involutive Yang-Baxter groups, Trans. Amer. Math. Soc. 362 (2010), 2541-2558. · Zbl 1188.81115
[8] F. Cedó, J. Okniński: Indecomposable solutions of the Yang-Baxter equation of square-free cardinality, arXiv:2212.06753v1[math.QA]
[9] L. N. Childs: Fixed-point free endomorphisms and Hopf Galois structures, Proc. Amer. Math. Soc. 141 (2013), 1255-1265. · Zbl 1269.12003
[10] F. Chouraqui: Garside groups and Yang-Baxter equation, Comm. Algebra 38 (2010), 4441-4460. · Zbl 1216.16023
[11] F. Chouraqui, E. Godelle: Finite quotients of groups of I-type, Adv. Math. 258 (2014), 46-68. · Zbl 1344.20051
[12] P. Dehornoy: Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs, Adv. Math. 282 (2015), 93-127. · Zbl 1326.20039
[13] V. G. Drinfeld: On some unsolved problems in quantum group theory, in: Quantum Groups (Leningrad, 1990), Lecture Notes in Math. 1510, Springer-Verlag, Berlin, 1992, 1-8. · Zbl 0765.17014
[14] P. Etingof, T. Schedler, A. Soloviev: Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), 169-209. · Zbl 0969.81030
[15] M. A. Farinati, J. García Galofre: A differential bialgebra associated to a set theoretical solution of the Yang-Baxter equation, J. Pure Appl. Algebra 220 (2016), 3454-3475. · Zbl 1347.16036
[16] S. C. Featherstonhaugh, A. Caranti, L. N. Childs: Abelian Hopf Galois struc-tures on prime-power Galois field extensions, Trans. Amer. Math. Soc. 364 (2012), 3675-3684. · Zbl 1287.12002
[17] T. Gateva-Ivanova: Noetherian properties of skew-polynomial rings with binomial relations, Trans. Amer. Math. Soc. 343 (1994), 203-219. · Zbl 0807.16026
[18] T. Gateva-Ivanova: Skew Polynomial Rings with Binomial Relations, J. Algebra 185 (1996), 710-753. · Zbl 0863.16016
[19] T. Gateva-Ivanova, M. Van den Bergh: Semigroups of I-type, J. Algebra 206 (1998), 97-112. · Zbl 0944.20049
[20] L. Guarnieri, L. Vendramin: Skew braces and the Yang-Baxter equation, Math. Comp. 86 (2017), 2519-2534. · Zbl 1371.16037
[21] N. Jacobson: Structure of rings, Amer. Math. Soc. Colloq. Publ. 37, 1964.
[22] V. Lebed, L. Vendramin: Cohomology and extensions of braces, Pacific J. Math. 284 (2016), 191-212. · Zbl 1357.20009
[23] V. Lebed, L. Vendramin: Homology of left non-degenerate set-theoretic so-lutions to the Yang-Baxter equation, Adv. Math. 304 (2017), 1219-1261. · Zbl 1356.16027
[24] J.-H. Lu, M. Yan, Y.-C. Zhu: On the set-theoretical Yang-Baxter equation, Duke Math. J. 104 (2000), 1-18. · Zbl 0960.16043
[25] J. Okniński: Talk on the meeting “Skew Braces and the Yang-Baxter Equa-tion”, Oberwolfach, 26 February -4 March, 2023.
[26] W. Rump: A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math. 193 (2005), 40-55. · Zbl 1074.81036
[27] W. Rump: Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007), 153-170. · Zbl 1115.16022
[28] W. Rump: Construction of finite braces, Ann. Combinatorics 23 (2019), 391-416. · Zbl 1458.20025
[29] W. Rump: Classification of indecomposable involutive set-theoretic solu-tions to the Yang-Baxter equation, Forum Math. 32 (2020), 891-903. · Zbl 1446.16041
[30] W. Rump: One-generator braces and indecomposable set-theoretic solutions to the Yang-Baxter equation, Proc. Edinb. Math. Soc. 63 (2020), 676-696. · Zbl 1473.17091
[31] J. Tate, M. Van den Bergh: Homological properties of Sklyanin Algebras, Invent. Math. 124 (1996), 619-647. · Zbl 0876.17010
[32] A. Weinstein, P. Xu: Classical solutions of the quantum Yang-Baxter equa-tion, Comm. Math. Phys. 148 (1992), 309-343. · Zbl 0849.17015
[33] Institute for Algebra and Number Theory, University of Stuttgart Pfaffenwaldring 57, D-70550 Stuttgart, Germany e-mail: rump@mathematik.uni-stuttgart.de
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.