×

Towers and hierarchies in the standard model from emergence in quantum gravity. (English) Zbl 07774777

Summary: Based on Quantum Gravity arguments, it has been suggested that all kinetic terms of light particles below the UV cut-off could arise in the IR via quantum (loop) corrections. These loop corrections involve infinite towers of states becoming light (e.g. Kaluza-Klein or string towers). We study implications of this Emergence Proposal for fundamental scales in the Standard Model (SM). In this scheme all Yukawa couplings are of order one in the UV and small Yukawas for lighter generations appear via large anomalous dimensions induced by the towers of states. Thus, the observed hierarchies of quark and lepton masses are a reflection of the structure of towers of states that lie below the Quantum Gravity scale, \(\Lambda_{\mathrm{QG}}\). Small Dirac neutrino masses consistent with experimental observation appear due to the existence of a tower of SM singlet states of mass \(m_0 \simeq Y_{\nu_3} M_p \simeq 7 \times 10^5\) GeV, opening up a new extra dimension, while the UV cut-off occurs at \(\Lambda_{\mathrm{QG}} \lesssim 10^{14}\) GeV. Additional constraints relating the Electro-Weak (EW) and cosmological constant (c.c.) scales (denoted \(M_{\mathrm{EW}}\) and \(V_0\)) appear if the Swampland condition \(m_{\nu_1} \lesssim V_0^{1/4}\) is imposed (with \(\nu_1\) denoting the lightest neutrino), which itself arises upon applying the AdS non-SUSY Conjecture or the AdS/dS Distance Conjecture to the 3d vacua from circle compactifications of the SM. In particular, the EW scale and that of the extra dimension fulfill \(m_0M_{\mathrm{EW}} \lesssim 10^2 V_0^{1/4}M_p\), thus relating the EW hierarchy problem to that of the c.c. Hence, all fundamental scales may be written as powers of the c.c., i.e. \(m_\bullet\sim V_0^\delta M_p^{1-4\delta}\). The scale of SUSY breaking is \(m_{3/2} \lesssim 7 \times 10^5\) GeV, which favours a Mini-Split scenario that could be possibly tested at LHC and/or FCC.

MSC:

81-XX Quantum theory

References:

[1] Minkowski, P., μ → eγ at a Rate of One Out of 10^9Muon Decays?, Phys. Lett. B, 67, 421 (1977) · doi:10.1016/0370-2693(77)90435-X
[2] Gell-Mann, M.; Ramond, P.; Slansky, R., Complex Spinors and Unified Theories, Conf. Proc. C, 790927, 315 (1979)
[3] T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys.64 (1980) 1103 [INSPIRE].
[4] Elias-Miro, J., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B, 709, 222 (2012) · doi:10.1016/j.physletb.2012.02.013
[5] Degrassi, G., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP, 08, 098 (2012) · doi:10.1007/JHEP08(2012)098
[6] Feruglio, F., Pieces of the Flavour Puzzle, Eur. Phys. J. C, 75, 373 (2015) · doi:10.1140/epjc/s10052-015-3576-5
[7] C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE]. · Zbl 1117.81117
[8] Palti, E., The Swampland: Introduction and Review, Fortsch. Phys., 67, 1900037 (2019) · Zbl 1527.83096 · doi:10.1002/prop.201900037
[9] van Beest, M.; Calderón-Infante, J.; Mirfendereski, D.; Valenzuela, I., Lectures on the Swampland Program in String Compactifications, Phys. Rept., 989, 1 (2022) · Zbl 1510.81111 · doi:10.1016/j.physrep.2022.09.002
[10] Graña, M.; Herráez, A., The Swampland Conjectures: A Bridge from Quantum Gravity to Particle Physics, Universe, 7, 273 (2021) · doi:10.3390/universe7080273
[11] D. Harlow, Wormholes, Emergent Gauge Fields, and the Weak Gravity Conjecture, JHEP01 (2016) 122 [arXiv:1510.07911] [INSPIRE]. · Zbl 1388.83255
[12] Grimm, TW; Palti, E.; Valenzuela, I., Infinite Distances in Field Space and Massless Towers of States, JHEP, 08, 143 (2018) · Zbl 1396.81151 · doi:10.1007/JHEP08(2018)143
[13] Corvilain, P.; Grimm, TW; Valenzuela, I., The Swampland Distance Conjecture for Kähler moduli, JHEP, 08, 075 (2019) · Zbl 1421.83112 · doi:10.1007/JHEP08(2019)075
[14] Heidenreich, B.; Reece, M.; Rudelius, T., The Weak Gravity Conjecture and Emergence from an Ultraviolet Cutoff, Eur. Phys. J. C, 78, 337 (2018) · doi:10.1140/epjc/s10052-018-5811-3
[15] B. Heidenreich, M. Reece and T. Rudelius, Emergence of Weak Coupling at Large Distance in Quantum Gravity, Phys. Rev. Lett.121 (2018) 051601 [arXiv:1802.08698] [INSPIRE]. · Zbl 1388.81939
[16] Blumenhagen, R.; Kläwer, D.; Schlechter, L., Swampland Variations on a Theme by KKLT, JHEP, 05, 152 (2019) · Zbl 1416.83112 · doi:10.1007/JHEP05(2019)152
[17] Blumenhagen, R.; Brinkmann, M.; Makridou, A., Quantum Log-Corrections to Swampland Conjectures, JHEP, 02, 064 (2020) · Zbl 1435.83171 · doi:10.1007/JHEP02(2020)064
[18] Enríquez Rojo, M.; Plauschinn, E., Swampland conjectures for type IIB orientifolds with closed-string U(1)s, JHEP, 07, 026 (2020) · Zbl 1451.83111 · doi:10.1007/JHEP07(2020)026
[19] R. Blumenhagen et al., KKLT and the Swampland Conjectures, PoSCORFU2019 (2020) 158 [arXiv:2004.09285] [INSPIRE].
[20] Castellano, A.; Herráez, A.; Ibáñez, LE, The emergence proposal in quantum gravity and the species scale, JHEP, 06, 047 (2023) · Zbl 07716753 · doi:10.1007/JHEP06(2023)047
[21] Marchesano, F.; Melotti, L., EFT strings and emergence, JHEP, 02, 112 (2023) · Zbl 1541.81138 · doi:10.1007/JHEP02(2023)112
[22] Lee, S-J; Lerche, W.; Weigand, T., Emergent strings from infinite distance limits, JHEP, 02, 190 (2022) · Zbl 07608191 · doi:10.1007/JHEP02(2022)190
[23] Georgi, H.; Nelson, AE; Manohar, A., On the Proposition That All Fermions Are Created Equal, Phys. Lett. B, 126, 169 (1983) · doi:10.1016/0370-2693(83)90584-1
[24] Ibáñez, LE, Supersymmetric Coset Unified Theories, Phys. Lett. B, 150, 127 (1985) · doi:10.1016/0370-2693(85)90154-6
[25] A.E. Nelson and M.J. Strassler, Suppressing flavor anarchy, JHEP09 (2000) 030 [hep-ph/0006251] [INSPIRE].
[26] Poland, D.; Simmons-Duffin, D., Superconformal Flavor Simplified, JHEP, 05, 079 (2010) · Zbl 1287.81083 · doi:10.1007/JHEP05(2010)079
[27] Dudas, E.; von Gersdorff, G.; Parmentier, J.; Pokorski, S., Flavour in supersymmetry: Horizontal symmetries or wave function renormalisation, JHEP, 12, 015 (2010) · Zbl 1294.81248 · doi:10.1007/JHEP12(2010)015
[28] Dvali, G.; Lüst, D., Evaporation of Microscopic Black Holes in String Theory and the Bound on Species, Fortsch. Phys., 58, 505 (2010) · Zbl 1208.81158 · doi:10.1002/prop.201000008
[29] Dvali, G., Black Holes and Large N Species Solution to the Hierarchy Problem, Fortsch. Phys., 58, 528 (2010) · Zbl 1196.81258 · doi:10.1002/prop.201000009
[30] G. Dvali and C. Gomez, Species and Strings, arXiv:1004.3744 [INSPIRE]. · Zbl 1219.83083
[31] Ooguri, H.; Vafa, C., Non-supersymmetric AdS and the Swampland, Adv. Theor. Math. Phys., 21, 1787 (2017) · Zbl 1471.83020 · doi:10.4310/ATMP.2017.v21.n7.a8
[32] D. Lüst, E. Palti and C. Vafa, AdS and the Swampland, Phys. Lett. B797 (2019) 134867 [arXiv:1906.05225] [INSPIRE]. · Zbl 1427.81108
[33] Arkani-Hamed, N.; Dubovsky, S.; Nicolis, A.; Villadoro, G., Quantum Horizons of the Standard Model Landscape, JHEP, 06, 078 (2007) · doi:10.1088/1126-6708/2007/06/078
[34] Ibáñez, LE; Martin-Lozano, V.; Valenzuela, I., Constraining Neutrino Masses, the Cosmological Constant and BSM Physics from the Weak Gravity Conjecture, JHEP, 11, 066 (2017) · Zbl 1383.83031 · doi:10.1007/JHEP11(2017)066
[35] L.E. Ibáñez, V. Martin-Lozano and I. Valenzuela, Constraining the EW Hierarchy from the Weak Gravity Conjecture, arXiv:1707.05811 [INSPIRE]. · Zbl 1383.83031
[36] Y. Hamada and G. Shiu, Weak Gravity Conjecture, Multiple Point Principle and the Standard Model Landscape, JHEP11 (2017) 043 [arXiv:1707.06326] [INSPIRE]. · Zbl 1383.83011
[37] Gonzalo, E.; Herráez, A.; Ibáñez, LE, AdS-phobia, the WGC, the Standard Model and Supersymmetry, JHEP, 06, 051 (2018) · Zbl 1395.83107 · doi:10.1007/JHEP06(2018)051
[38] Gonzalo, E.; Ibáñez, LE, The Fundamental Need for a SM Higgs and the Weak Gravity Conjecture, Phys. Lett. B, 786, 272 (2018) · doi:10.1016/j.physletb.2018.09.034
[39] Gonzalo, E.; Ibáñez, LE; Valenzuela, I., Swampland constraints on neutrino masses, JHEP, 02, 088 (2022) · Zbl 1522.83335 · doi:10.1007/JHEP02(2022)088
[40] Arvanitaki, A.; Craig, N.; Dimopoulos, S.; Villadoro, G., Mini-Split, JHEP, 02, 126 (2013) · doi:10.1007/JHEP02(2013)126
[41] N. Arkani-Hamed et al., Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].
[42] Hall, LJ; Nomura, Y.; Shirai, S., Spread Supersymmetry with Wino LSP: Gluino and Dark Matter Signals, JHEP, 01, 036 (2013) · doi:10.1007/JHEP01(2013)036
[43] L.E. Ibáñez, The Quantum Gravity Swampland and Particle Physics, Talk at PASCOS-2022, Heidelberg, Germany 2022.
[44] Banks, T., Cosmological breaking of supersymmetry?, Int. J. Mod. Phys. A, 16, 910 (2001) · Zbl 0982.83040 · doi:10.1142/S0217751X01003998
[45] Arkani-Hamed, N.; Motl, L.; Nicolis, A.; Vafa, C., The string landscape, black holes and gravity as the weakest force, JHEP, 06, 060 (2007) · doi:10.1088/1126-6708/2007/06/060
[46] D. Harlow, B. Heidenreich, M. Reece and T. Rudelius, Weak gravity conjecture, Rev. Mod. Phys.95 (2023) 035003 [arXiv:2201.08380] [INSPIRE]. · Zbl 1521.81161
[47] Ooguri, H.; Vafa, C., On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B, 766, 21 (2007) · Zbl 1117.81117 · doi:10.1016/j.nuclphysb.2006.10.033
[48] Ooguri, H.; Palti, E.; Shiu, G.; Vafa, C., Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B, 788, 180 (2019) · doi:10.1016/j.physletb.2018.11.018
[49] Font, A.; Herráez, A.; Ibáñez, LE, The Swampland Distance Conjecture and Towers of Tensionless Branes, JHEP, 08, 044 (2019) · Zbl 1421.81095 · doi:10.1007/JHEP08(2019)044
[50] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, De Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
[51] Garg, SK; Krishnan, C.; Zaid Zaz, M., Bounds on Slow Roll at the Boundary of the Landscape, JHEP, 03, 029 (2019) · doi:10.1007/JHEP03(2019)029
[52] P. Agrawal, S. Gukov, G. Obied and C. Vafa, Topological Gravity as the Early Phase of Our Universe, arXiv:2009.10077 [INSPIRE].
[53] E. Palti, Fermions and the Swampland, Phys. Lett. B808 (2020) 135617 [arXiv:2005.08538] [INSPIRE].
[54] C. Csaki, The minimal supersymmetric standard model (MSSM), Mod. Phys. Lett. A11 (1996) 599 [hep-ph/9606414] [INSPIRE].
[55] Gonzalez-Garcia, MC; Maltoni, M.; Schwetz, T., NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments, Universe, 7, 459 (2021) · doi:10.3390/universe7120459
[56] K.R. Dienes, E. Dudas and T. Gherghetta, Neutrino oscillations without neutrino masses or heavy mass scales: A higher dimensional seesaw mechanism, Nucl. Phys. B557 (1999) 25 [hep-ph/9811428] [INSPIRE].
[57] N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B429 (1998) 263 [hep-ph/9803315] [INSPIRE]. · Zbl 1355.81103
[58] E. Gonzalo, L.E. Ibáñez and I. Valenzuela, AdS swampland conjectures and light fermions, Phys. Lett. B822 (2021) 136691 [arXiv:2104.06415] [INSPIRE]. · Zbl 07417987
[59] Montero, M.; Van Riet, T.; Venken, G., Festina Lente: EFT Constraints from Charged Black Hole Evaporation in de Sitter, JHEP, 01, 039 (2020) · Zbl 1434.83070 · doi:10.1007/JHEP01(2020)039
[60] Montero, M.; Vafa, C.; Van Riet, T.; Venken, G., The FL bound and its phenomenological implications, JHEP, 10, 009 (2021) · Zbl 1476.83161 · doi:10.1007/JHEP10(2021)009
[61] GAMBIT Cosmology Workgroup collaboration, Strengthening the bound on the mass of the lightest neutrino with terrestrial and cosmological experiments, Phys. Rev. D103 (2021) 123508 [arXiv:2009.03287] [INSPIRE].
[62] E. Di Valentino, S. Gariazzo and O. Mena, Most constraining cosmological neutrino mass bounds, Phys. Rev. D104 (2021) 083504 [arXiv:2106.15267] [INSPIRE].
[63] Roy Choudhury, S.; Hannestad, S., Updated results on neutrino mass and mass hierarchy from cosmology with Planck 2018 likelihoods, JCAP, 07, 037 (2020) · doi:10.1088/1475-7516/2020/07/037
[64] Cribiori, N.; Lüst, D.; Scalisi, M., The gravitino and the swampland, JHEP, 06, 071 (2021) · Zbl 1466.83027 · doi:10.1007/JHEP06(2021)071
[65] Castellano, A.; Font, A.; Herráez, A.; Ibáñez, LE, A gravitino distance conjecture, JHEP, 08, 092 (2021) · doi:10.1007/JHEP08(2021)092
[66] J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B257 (1991) 83 [INSPIRE].
[67] H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett.66 (1991) 1815 [INSPIRE].
[68] Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys.85 (1991) 1 [INSPIRE].
[69] Anchordoqui, LA, The Scale of Supersymmetry Breaking and the Dark Dimension, JHEP, 05, 060 (2023) · Zbl 07701875 · doi:10.1007/JHEP05(2023)060
[70] Montero, M.; Vafa, C.; Valenzuela, I., The dark dimension and the Swampland, JHEP, 02, 022 (2023) · doi:10.1007/JHEP02(2023)022
[71] E. Gonzalo, M. Montero, G. Obied and C. Vafa, Dark Dimension Gravitons as Dark Matter, arXiv:2209.09249 [INSPIRE].
[72] R. Blumenhagen, M. Brinkmann and A. Makridou, The dark dimension in a warped throat, Phys. Lett. B838 (2023) 137699 [arXiv:2208.01057] [INSPIRE]. · Zbl 1519.83093
[73] L.A. Anchordoqui, I. Antoniadis and D. Lüst, The dark universe: Primordial black hole ⇋ dark graviton gas connection, Phys. Lett. B840 (2023) 137844 [arXiv:2210.02475] [INSPIRE].
[74] E. Witten, Quantum gravity in de Sitter space, in the proceedings of the Strings 2001: International Conference, Mumbai, India, 5-10 January 2001 [hep-th/0106109] [INSPIRE].
[75] L.A. Anchordoqui, I. Antoniadis and D. Lüst, Dark dimension, the swampland, and the dark matter fraction composed of primordial black holes, Phys. Rev. D106 (2022) 086001 [arXiv:2206.07071] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.