×

Solitonic excitations in \(\mathrm{AdS}_2\). (English) Zbl 07744331

Summary: We construct large families of supergravity solutions that are asymptotic to \(\mathrm{AdS}_2\) and terminate with a cap that is singular in two dimensions but smooth in higher dimensions. These solutions break supersymmetry and conformal invariance. We list arguments suggesting that they correspond to finite-energy excitations in empty \(\mathrm{AdS}_2\) that back-react on the geometry by inducing non-trivial bubbling topology. They are constructed from the novel technique associated with the Ernst formalism for \(\mathrm{AdS}_D \times \mathcal{C}\) solitons in supergravity [I. Bah and P. Heidmann, J. High Energy Phys. 2023, No. 2, Paper No. 133, 67 p. (2023; Zbl 1541.83036)]. The technique is applied to \(D = 2\) in M-theory with \(\mathcal{C} = \mathrm{S}^3\times\mathrm{T}^6\). The directions of \(\mathcal{C}\) degenerate smoothly as a chain of bolts which ends the spacetime in the IR and generates non-supersymmetric bubbles supported by M2-brane flux. Some specific solutions have “flat” directions where the sizes of their bubbles are totally unconstrained and can be arbitrarily tuned while the asymptotics remains fixed. The solitons should correspond to regular non-supersymmetric states of a holographically dual \(\mathrm{CFT}_1\).

MSC:

81-XX Quantum theory

Citations:

Zbl 1541.83036

References:

[1] Bah, I.; Heidmann, P., Non-BPS bubbling geometries in AdS_3, JHEP, 02, 133 (2023) · Zbl 1541.83036 · doi:10.1007/JHEP02(2023)133
[2] Strominger, A., AdS(2) quantum gravity and string theory, JHEP, 01, 007 (1999) · Zbl 0965.81097 · doi:10.1088/1126-6708/1999/01/007
[3] Spradlin, M.; Strominger, A., Vacuum states for AdS(2) black holes, JHEP, 11, 021 (1999) · Zbl 0955.83016 · doi:10.1088/1126-6708/1999/11/021
[4] Bena, I.; Bobev, N.; Warner, NP, Bubbles on Manifolds with a U(1) Isometry, JHEP, 08, 004 (2007) · Zbl 1326.81140 · doi:10.1088/1126-6708/2007/08/004
[5] Lunin, O., Bubbling geometries for AdS_2× S^2, JHEP, 10, 167 (2015) · Zbl 1388.83858 · doi:10.1007/JHEP10(2015)167
[6] Bena, I.; Heidmann, P.; Turton, D., AdS_2holography: mind the cap, JHEP, 12, 028 (2018) · Zbl 1407.81124 · doi:10.1007/JHEP12(2018)028
[7] Heidmann, P.; Mondal, S., The full space of BPS multicenter states with pure D-brane charges, JHEP, 06, 011 (2019) · Zbl 1416.83053 · doi:10.1007/JHEP06(2019)011
[8] Sen, A., Extremal black holes and elementary string states, Mod. Phys. Lett. A, 10, 2081 (1995) · doi:10.1142/S0217732395002234
[9] Strominger, A.; Vafa, C., Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B, 379, 99 (1996) · Zbl 1376.83026 · doi:10.1016/0370-2693(96)00345-0
[10] Maldacena, JM; Strominger, A.; Witten, E., Black hole entropy in M theory, JHEP, 12, 002 (1997) · Zbl 0951.83034 · doi:10.1088/1126-6708/1997/12/002
[11] Benini, F.; Hristov, K.; Zaffaroni, A., Exact microstate counting for dyonic black holes in AdS4, Phys. Lett. B, 771, 462 (2017) · Zbl 1372.83030 · doi:10.1016/j.physletb.2017.05.076
[12] Azzurli, F., A universal counting of black hole microstates in AdS_4, JHEP, 02, 054 (2018) · Zbl 1387.81303 · doi:10.1007/JHEP02(2018)054
[13] Sen, A., Quantum Entropy Function from AdS(2)/CFT(1) Correspondence, Int. J. Mod. Phys. A, 24, 4225 (2009) · Zbl 1175.83045 · doi:10.1142/S0217751X09045893
[14] Gupta, RK; Sen, A., Ads(3)/CFT(2) to Ads(2)/CFT(1), JHEP, 04, 034 (2009) · doi:10.1088/1126-6708/2009/04/034
[15] Sen, A., State Operator Correspondence and Entanglement in AdS_2/CFT_1, Entropy, 13, 1305 (2011) · Zbl 1296.83046 · doi:10.3390/e13071305
[16] Maldacena, JM; Michelson, J.; Strominger, A., Anti-de Sitter fragmentation, JHEP, 02, 011 (1999) · Zbl 0956.83052 · doi:10.1088/1126-6708/1999/02/011
[17] Almheiri, A.; Polchinski, J., Models of AdS_2backreaction and holography, JHEP, 11, 014 (2015) · Zbl 1388.83079 · doi:10.1007/JHEP11(2015)014
[18] A. Kitaev, A simple model of quantum holography, talks at KITP, 7 April 2015 and 27 May 2015, http://online.kitp.ucsb.edu/online/entangled15/kitaev, http://online.kitp.ucsb.edu/online/entangled15/kitaev2.
[19] Maldacena, J.; Stanford, D., Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.106002
[20] J.S. Cotler et al., Black Holes and Random Matrices, JHEP05 (2017) 118 [Erratum ibid.09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
[21] Balasubramanian, V.; Craps, B.; Czech, B.; Sárosi, G., Echoes of chaos from string theory black holes, JHEP, 03, 154 (2017) · Zbl 1377.83036 · doi:10.1007/JHEP03(2017)154
[22] Kitaev, A.; Suh, SJ, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP, 05, 183 (2018) · Zbl 1391.83080 · doi:10.1007/JHEP05(2018)183
[23] R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B252 (1985) 343 [INSPIRE].
[24] C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B126 (1983) 41 [INSPIRE].
[25] Lin, H.; Lunin, O.; Maldacena, JM, Bubbling AdS space and 1/2 BPS geometries, JHEP, 10, 025 (2004) · doi:10.1088/1126-6708/2004/10/025
[26] O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [INSPIRE].
[27] Kanitscheider, I.; Skenderis, K.; Taylor, M., Fuzzballs with internal excitations, JHEP, 06, 056 (2007) · doi:10.1088/1126-6708/2007/06/056
[28] Giusto, S.; Lunin, O.; Mathur, SD; Turton, D., D1-D5-P microstates at the cap, JHEP, 02, 050 (2013) · doi:10.1007/JHEP02(2013)050
[29] Giusto, S.; Moscato, E.; Russo, R., AdS_3holography for 1/4 and 1/8 BPS geometries, JHEP, 11, 004 (2015) · Zbl 1388.83659 · doi:10.1007/JHEP11(2015)004
[30] I. Bena et al., Habemus Superstratum! A constructive proof of the existence of superstrata, JHEP05 (2015) 110 [arXiv:1503.01463] [INSPIRE]. · Zbl 1388.83739
[31] Bena, I.; Martinec, E.; Turton, D.; Warner, NP, Momentum Fractionation on Superstrata, JHEP, 05, 064 (2016) · Zbl 1388.83741 · doi:10.1007/JHEP05(2016)064
[32] Heidmann, P.; Warner, NP, Superstratum Symbiosis, JHEP, 09, 059 (2019) · Zbl 1423.83032 · doi:10.1007/JHEP09(2019)059
[33] Heidmann, P.; Mayerson, DR; Walker, R.; Warner, NP, Holomorphic Waves of Black Hole Microstructure, JHEP, 02, 192 (2020) · Zbl 1435.83088 · doi:10.1007/JHEP02(2020)192
[34] Shigemori, M., Superstrata, Gen. Rel. Grav., 52, 51 (2020) · Zbl 1443.83061 · doi:10.1007/s10714-020-02698-8
[35] R.P. Geroch, A Method for generating solutions of Einstein’s equations, J. Math. Phys.12 (1971) 918 [INSPIRE]. · Zbl 0214.49002
[36] R.P. Geroch, A Method for generating new solutions of Einstein’s equation. 2, J. Math. Phys.13 (1972) 394 [INSPIRE]. · Zbl 0241.53038
[37] Bah, I.; Heidmann, P., Topological stars, black holes and generalized charged Weyl solutions, JHEP, 09, 147 (2021) · Zbl 1472.83021 · doi:10.1007/JHEP09(2021)147
[38] Bah, I.; Heidmann, P., Smooth bubbling geometries without supersymmetry, JHEP, 09, 128 (2021) · Zbl 1472.83020 · doi:10.1007/JHEP09(2021)128
[39] Bah, I.; Heidmann, P., Bubble bag end: a bubbly resolution of curvature singularity, JHEP, 10, 165 (2021) · Zbl 1476.83015 · doi:10.1007/JHEP10(2021)165
[40] Heidmann, P., Non-BPS floating branes and bubbling geometries, JHEP, 02, 162 (2022) · Zbl 1522.83184 · doi:10.1007/JHEP02(2022)162
[41] H. Weyl, The theory of gravitation, Annalen Phys.54 (1917) 117 [INSPIRE]. · JFM 46.1303.01
[42] Emparan, R.; Reall, HS, Generalized Weyl solutions, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.084025
[43] Bah, I.; Heidmann, P., Topological Stars and Black Holes, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.151101
[44] Elvang, H.; Horowitz, GT, When black holes meet Kaluza-Klein bubbles, Phys. Rev. D, 67 (2003) · doi:10.1103/PhysRevD.67.044015
[45] Bah, I.; Heidmann, P.; Weck, P., Schwarzschild-like topological solitons, JHEP, 08, 269 (2022) · Zbl 1522.83120 · doi:10.1007/JHEP08(2022)269
[46] E. Cremmer, B. Julia, H. Lu and C.N. Pope, Dualization of dualities. 1., Nucl. Phys. B523 (1998) 73 [hep-th/9710119] [INSPIRE]. · Zbl 1031.81599
[47] J. Bellorin, P. Meessen and T. Ortin, All the supersymmetric solutions of N=1,d=5 ungauged supergravity, JHEP01 (2007) 020 [hep-th/0610196] [INSPIRE].
[48] Castro, A.; Grumiller, D.; Larsen, F.; McNees, R., Holographic Description of AdS(2) Black Holes, JHEP, 11, 052 (2008) · doi:10.1088/1126-6708/2008/11/052
[49] M. Cvetič and I. Papadimitriou, AdS_2holographic dictionary, JHEP12 (2016) 008 [Erratum ibid.01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
[50] Chamon, C.; Jackiw, R.; Pi, S-Y; Santos, L., Conformal quantum mechanics as the CFT_1dual to AdS_2, Phys. Lett. B, 701, 503 (2011) · doi:10.1016/j.physletb.2011.06.023
[51] R. Jackiw and S.-Y. Pi, Conformal Blocks for the 4-Point Function in Conformal Quantum Mechanics, Phys. Rev. D86 (2012) 045017 [Erratum ibid.86 (2012) 089905] [arXiv:1205.0443] [INSPIRE].
[52] G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D15 (1977) 2752 [INSPIRE].
[53] J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett.28 (1972) 1082 [INSPIRE].
[54] Costa, MS; Perry, MJ, Interacting black holes, Nucl. Phys. B, 591, 469 (2000) · Zbl 1006.83026 · doi:10.1016/S0550-3213(00)00577-0
[55] Kanitscheider, I.; Skenderis, K.; Taylor, M., Holographic anatomy of fuzzballs, JHEP, 04, 023 (2007) · doi:10.1088/1126-6708/2007/04/023
[56] Taylor, M., Matching of correlators in AdS(3) / CFT(2), JHEP, 06, 010 (2008) · doi:10.1088/1126-6708/2008/06/010
[57] Giusto, S.; Rawash, S.; Turton, D., Ads_3holography at dimension two, JHEP, 07, 171 (2019) · Zbl 1418.83052 · doi:10.1007/JHEP07(2019)171
[58] Rawash, S.; Turton, D., Supercharged AdS_3Holography, JHEP, 07, 178 (2021) · Zbl 1468.83041 · doi:10.1007/JHEP07(2021)178
[59] E. Witten, Instability of the Kaluza-Klein Vacuum, Nucl. Phys. B195 (1982) 481 [INSPIRE]. · Zbl 0900.53036
[60] Bah, I.; Dey, A.; Heidmann, P., Stability of topological solitons, and black string to bubble transition, JHEP, 04, 168 (2022) · Zbl 1522.81547 · doi:10.1007/JHEP04(2022)168
[61] Chowdhury, BD; Mathur, SD, Radiation from the non-extremal fuzzball, Class. Quant. Grav., 25 (2008) · Zbl 1180.83046 · doi:10.1088/0264-9381/25/13/135005
[62] Bena, I.; Heidmann, P.; Monten, R.; Warner, NP, Thermal Decay without Information Loss in Horizonless Microstate Geometries, SciPost Phys., 7, 063 (2019) · doi:10.21468/SciPostPhys.7.5.063
[63] Bena, I.; Eperon, F.; Heidmann, P.; Warner, NP, The Great Escape: Tunneling out of Microstate Geometries, JHEP, 04, 112 (2021) · Zbl 1462.83025 · doi:10.1007/JHEP04(2021)112
[64] V.A. Belinsky and V.E. Sakharov, Stationary Gravitational Solitons with Axial Symmetry, Sov. Phys. JETP50 (1979) 1 [INSPIRE].
[65] B.K. Harrison, Bäcklund Transformation for the Ernst Equation of General Relativity, Phys. Rev. Lett.41 (1978) 1197.
[66] G.A. Alekseev, Monodromy transform approach to solution of some field equations in general relativity and string theory, in the proceedings of the Nonlinearity, Integrability and All That: Twenty Years after NEEDS 79, (1999) [doi:10.1142/9789812817587_0002] [gr-qc/9911045] [INSPIRE]. · Zbl 0965.35175
[67] G.A. Alekseev, Gravitational solitons and monodromy transform approach to solution of integrable reductions of Einstein equations, Physica D152 (2001) 97 [gr-qc/0001012] [INSPIRE]. · Zbl 0982.83016
[68] H. Stephani et al., Exact solutions of Einstein’s field equations, Cambridge Univ. Press, Cambridge (2003) [doi:10.1017/CBO9780511535185] [INSPIRE]. · Zbl 1057.83004
[69] Gauntlett, JP, All supersymmetric solutions of minimal supergravity in five- dimensions, Class. Quant. Grav., 20, 4587 (2003) · Zbl 1045.83001 · doi:10.1088/0264-9381/20/21/005
[70] Bena, I.; Warner, NP, Bubbling supertubes and foaming black holes, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.066001
[71] Bena, I.; Warner, NP, Black holes, black rings and their microstates, Lect. Notes Phys., 755, 1 (2008) · Zbl 1155.83301 · doi:10.1007/978-3-540-79523-0_1
[72] Heidmann, P., Four-center bubbled BPS solutions with a Gibbons-Hawking base, JHEP, 10, 009 (2017) · Zbl 1383.83018 · doi:10.1007/JHEP10(2017)009
[73] Bena, I.; Heidmann, P.; Ramirez, PF, A systematic construction of microstate geometries with low angular momentum, JHEP, 10, 217 (2017) · Zbl 1383.83043 · doi:10.1007/JHEP10(2017)217
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.