×

Finite point configurations in products of thick Cantor sets and a robust nonlinear Newhouse Gap Lemma. (English) Zbl 07725804

Summary: In this paper we prove that the set \(\{|x^1-x^2|,\dots,|x^k-x^{k+1}|:x^i\in E\}\) has non-empty interior in \(\mathbb{R}^k\) when \(E\subset\mathbb{R}^2\) is a Cartesian product of thick Cantor sets \(K_1,K_2\subset\mathbb{R}\). We also prove more general results where the distance map \(|x-y|\) is replaced by a function \(\phi(x,y)\) satisfying mild assumptions on its partial derivatives. In the process, we establish a nonlinear version of the classic Newhouse Gap Lemma, and show that if \(K_1,K_2, \phi\) are as above then there exists an open set \(S\) so that \(\bigcap_{x\in S}\phi(x,K_1\times K_2)\) has non-empty interior.

MSC:

28A75 Length, area, volume, other geometric measure theory
28A80 Fractals
42Bxx Harmonic analysis in several variables

References:

[1] Bennett, M., Iosevich, A. and Taylor, K.. Finite chains inside thin subsets of \(\mathbb{R}^d \) . Anal. PDE9(3) 2016, 597-614. · Zbl 1342.28006
[2] Bourgain, J.. A Szemerédi type theorem for sets of positive density in \(\textbf{R}^k \) . Israel J. Math., 54(3) 1986, 307-316. · Zbl 0609.10043
[3] Broderick, R., Fishman, L. and Simmons, D.. Quantitative results using variants of Schmidt’s game: dimension bounds, arithmetic progressions, and more. Acta Arith., 188(3) 2019, 289-316. · Zbl 1443.11144
[4] Chan, V., Łaba, I. and Pramanik, M.. Finite configurations in sparse sets. J. Anal. Math., 1282016, 289-335. · Zbl 1375.28008
[5] Eswarathasan, S., Iosevich, A. and Taylor, K.. Fourier integral operators, fractal sets, and the regular value theorem. Adv. Math., 228(4) 2011, 2385-2402. · Zbl 1239.28004
[6] Falconer, K. and Yavicoli, A.. Intersections of thick compact sets in \(\mathbb{R}^d \) . Math. Z., 301(3) 20222291-2315. · Zbl 1514.11017
[7] Falconer, K. J.. On the Hausdorff dimensions of distance sets. Mathematika, 32(2) (1986), 1985, 206-212. · Zbl 0605.28005
[8] Furstenberg, H., Katznelson, Y. and Weiss, B.. Ergodic theory and configurations in sets of positive density. In Mathematics of Ramsey theory Algorithms Combin. (Springer, Berlin, 1990), 184-198. · Zbl 0738.28013
[9] Galo, B. and Mcdonald, A.. Volumes spanned by k-point configurations in \(\mathbb{R}^d \) . arXiv:2102.02323, 2021. · Zbl 1528.28008
[10] Grafakos, L., Greenleaf, A., Iosevich, A. and Palsson, E.. Multilinear generalised Radon transforms and point configurations. Forum Math., 27(4) 2015, 2323-2360. · Zbl 1317.44002
[11] Greenleaf, A., Iosevich, A. and Pramanik, M.. On necklaces inside thin subsets of \(\mathbb{R}^d \) . Math. Res. Lett., 24(2) 2017, 347-362. · Zbl 1390.28020
[12] Greenleaf, A., Iosevich, A. and Taylor, K.. Configuration sets with nonempty interior. J. Geom. Anal., 31(7) 2021, 6662-6680. · Zbl 1472.35470
[13] Greenleaf, A., Iosevich, A. and Taylor, K.. On k-point configuration sets with nonempty interior. Mathematika, 68(1) 2022, 163-190 · Zbl 1472.35470
[14] Guth, L., Iosevich, A., Ou, Y. and Wang, H.. On Falconer’s distance set problem in the plane. Invent. Math., 219(3) 2020, 779-830. · Zbl 1430.28001
[15] Iosevich, A. and Liu, B.. Equilateral triangles in subsets of \(\mathbb{R}^d\) of large Hausdorff dimension. Israel J. Math., 231(1) 2019, 123-137. · Zbl 1417.52023
[16] Iosevich, A. and Magyar, A.. Simplices in thin subsets of Euclidean spaces. arXiv:2009.04902.
[17] Iosevich, A. and Taylor, K.. Finite trees inside thin subsets of \(\mathbb{R}^d \) . In Modern methods in operator theory and harmonic analysis. Springer Proc. Math. Stat., vol. 291 (Springer, Cham, 2019), 51-56.
[18] Mcdonald, A.. Areas spanned by point configurations in the plane. Proc. Amer. Math. Soc., 149(5) 2021, 2035-2049. · Zbl 1460.52018
[19] Mcdonald, A. and Taylor, K.. Constant gap length trees in products of thick cantor sets. arXiv:2211.10750. · Zbl 07725804
[20] Newhouse, S. E.. Nondensity of axiom \(\text{A} \) (a) on \(S^2\) . In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) (Amer. Math. Soc., Providence, R.I., 1970).
[21] Ou, Y. and Taylor, K.. Finite point configurations and the regular value theorem in a fractal setting. arXiv:2003.06218. To appear in Indiana J. Math. · Zbl 1527.42010
[22] Palis, J. and Takens, F.. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. (Cambridge Studies in Advanced Math. vol 35 (Cambridge University Press, Cambridge, 1993). Fractal dimensions and infinitely many attractors. · Zbl 0790.58014
[23] Simon, K. and Taylor, K.. Interior of sums of planar sets and curves. Math. Proc. Camb. Phil. Soc., 168(1) 2020, 119-148. · Zbl 1429.28017
[24] Steinhaus, H.. Sur les distances des points dans les ensembles de mesure positive. Fundamenta Mathematicae, 1(1) 1920, 93-104. · JFM 47.0179.02
[25] Yavicoli, A.. Patterns in thick compact sets. Israel J. Math., 244(1) 2021, 95-126. · Zbl 1483.28012
[26] Yavicoli, A.. A survey on newhouse thickness, fractal intersections and patterns. arXiv:2212.02023.
[27] Yavicoli, A.. Thickness and a gap lemma in \(\mathbb{R}^d \) . arXiv:2204.08428. · Zbl 1483.28012
[28] Ziegler, T.. Nilfactors of \(\mathbb{R}^m \) -actions and configurations in sets of positive upper density in \(\mathbb{R}^m \) . J. Anal. Math., 992006, 249-266. · Zbl 1145.37005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.