×

Peacock patterns and resurgence in complex Chern-Simons theory. (English) Zbl 07715597

Summary: The partition function of complex Chern-Simons theory on a 3-manifold with torus boundary reduces to a finite-dimensional state-integral which is a holomorphic function of a complexified Planck’s constant \(\tau\) in the complex cut plane and an entire function of a complex parameter \(u\). This gives rise to a vector of factorially divergent perturbative formal power series whose Stokes rays form a peacock-like pattern in the complex plane. We conjecture that these perturbative series are resurgent, their trans-series involve two non-perturbative variables, their Stokes automorphism satisfies a unique factorization property and that it is given explicitly in terms of a fundamental matrix solution to a (dual) linear \(q\)-difference equation. We further conjecture that a distinguished entry of the Stokes automorphism matrix is the 3D-index of Dimofte-Gaiotto-Gukov. We provide proofs of our statements regarding the \(q\)-difference equations and their properties of their fundamental solutions and illustrate our conjectures regarding the Stokes matrices with numerical calculations for the two simplest hyperbolic \(\mathbf{4}_1\) and \(\mathbf{5}_2\) knots.

MSC:

57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
81T45 Topological field theories in quantum mechanics

References:

[1] Aniceto, I.; Başar, G.; Schiappa, R., A primer on resurgent transseries and their asymptotics, Phys. Rep., 809, 1-135 (2019) · doi:10.1016/j.physrep.2019.02.003
[2] Andersen, J.E., Kashaev, R.: A new formulation of the Teichmüller TQFT. arXiv:1305.4291 (2013)
[3] Andersen, JE; Kashaev, R., A TQFT from quantum Teichmüller theory, Commun. Math. Phys., 330, 3, 887-934 (2014) · Zbl 1305.57024 · doi:10.1007/s00220-014-2073-2
[4] Andersen, J.E., Kashaev, R.: The Teichmüller TQFT. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, World Sci. Publ., Hackensack, NJ, pp. 2541-2565 (2018) · Zbl 1447.57013
[5] Andersen, J.E., Malusà, A.: The AJ-conjecture for the Teichmüller TQFT. arxiv:1711.11522
[6] Aganagic, M., Vafa, C.: Large N duality, mirror symmetry, and a Q-deformed A-polynomial for knots. arxiv:1204.4709 · Zbl 1094.32006
[7] Beem, C.; Dimofte, T.; Pasquetti, S., Holomorphic blocks in three dimensions, JHEP, 12, 177 (2014) · Zbl 1333.81309 · doi:10.1007/JHEP12(2014)177
[8] Banerjee, S.; Longhi, P.; Romo, M., Exploring 5d BPS spectra with exponential networks, Annales Henri Poincare, 20, 12, 4055-4162 (2019) · Zbl 1426.81049 · doi:10.1007/s00023-019-00851-x
[9] Banerjee, S., Longhi, P., Romo, M.: Exponential BPS graphs and D brane counting on toric Calabi-Yau threefolds: Part I. arxiv:1910.05296 · Zbl 1479.81042
[10] Bender, C., Orszag, S.: Advanced mathematical methods for scientists and engineers. I, Springer-Verlag, New York, Asymptotic methods and perturbation theory, Reprint of the 1978 original (1999) · Zbl 0938.34001
[11] Cooper, D.; Culler, M.; Gillet, H.; Long, D.; Shalen, P., Plane curves associated to character varieties of \(3\)-manifolds, Invent. Math., 118, 1, 47-84 (1994) · Zbl 0842.57013 · doi:10.1007/BF01231526
[12] Costin, O.; Garoufalidis, S., Resurgence of the Kontsevich-Zagier series, Ann. Inst. Fourier (Grenoble), 61, 3, 1225-1258 (2011) · Zbl 1238.57016 · doi:10.5802/aif.2639
[13] Chen, D.; Möller, M.; Zagier, D., Quasimodularity and large genus limits of Siegel-Veech constants, J. Am. Math. Soc., 31, 4, 1059-1163 (2018) · Zbl 1404.32025 · doi:10.1090/jams/900
[14] Costin, O., Asymptotics and Borel Summability, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics (2009), Boca Raton: CRC Press, Boca Raton · Zbl 1169.34001
[15] Couso-Santamaría, R.; Mariño, M.; Schiappa, R., Resurgence matches quantization, J. Phys. A, 50, 14 (2017) · Zbl 1364.81222 · doi:10.1088/1751-8121/aa5e01
[16] Dimofte, T.; Garoufalidis, S., The quantum content of the gluing equations, Geom. Topol., 17, 3, 1253-1315 (2013) · Zbl 1283.57017 · doi:10.2140/gt.2013.17.1253
[17] Dimofte, T.; Gaiotto, D.; Gukov, S., 3-manifolds and 3d indices, Adv. Theor. Math. Phys., 17, 5, 975-1076 (2013) · Zbl 1297.81149 · doi:10.4310/ATMP.2013.v17.n5.a3
[18] Dimofte, T.; Gaiotto, D.; Gukov, S., Gauge theories labelled by three-manifolds, Commun. Math. Phys., 325, 2, 367-419 (2014) · Zbl 1292.57012 · doi:10.1007/s00220-013-1863-2
[19] Dimofte, T.; Gukov, S.; Lenells, J.; Zagier, D., Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Number Theory Phys., 3, 2, 363-443 (2009) · Zbl 1214.81151 · doi:10.4310/CNTP.2009.v3.n2.a4
[20] Dimofte, T., Complex Chern-Simons theory at level \(k\) via the 3d-3d correspondence, Commun. Math. Phys., 339, 2, 619-662 (2015) · Zbl 1336.57044 · doi:10.1007/s00220-015-2401-1
[21] Dimofte, T., Perturbative and nonperturbative aspects of complex Chern-Simons theory, J. Phys. A, 50, 44 (2017) · Zbl 1386.81121 · doi:10.1088/1751-8121/aa6a5b
[22] Eager, R.; Selmani, SA; Walcher, J., Exponential networks and representations of quivers, JHEP, 08, 63 (2017) · Zbl 1381.81096 · doi:10.1007/JHEP08(2017)063
[23] Eichler, M.; Zagier, D., The Theory of Jacobi Forms, Progress in Mathematics (1985), Boston: Birkhäuser Boston Inc, Boston · Zbl 0554.10018 · doi:10.1007/978-1-4684-9162-3
[24] Faddeev, L., Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys., 34, 3, 249-254 (1995) · Zbl 0836.47012 · doi:10.1007/BF01872779
[25] Fuji, H.; Gukov, S.; Sulkowski, P., Super-\(A\)-polynomial for knots and BPS states, Nucl. Phys. B, 867, 2, 506-546 (2013) · Zbl 1262.81170 · doi:10.1016/j.nuclphysb.2012.10.005
[26] Garoufalidis, S.: On the characteristic and deformation varieties of a knot. In: Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, pp. 291-309 (electronic) (2004) · Zbl 1080.57014
[27] Garoufalidis, S., Chern-Simons theory, analytic continuation and arithmetic, Acta Math. Vietnam, 33, 3, 335-362 (2008) · Zbl 1189.57010
[28] Garoufalidis, S., Geronimo, J.: Asymptotics of \(q\)-difference equations, Primes and knots, Contemp. Math., vol. 416, Amer. Math. Soc., Providence, RI, pp. 83-114 (2006) · Zbl 1144.57005
[29] Garoufalidis, S., Gu, J., Mariño, M.: The resurgent structure of quantum knot invariants. arXiv:2007.10190, Preprint (2020) · Zbl 1469.81047
[30] Gang, D., Hatsuda, Y.: S-duality resurgence in \({\rm SL}(2)\) Chern-Simons theory. J. High Energy Phys. (7), 053 (2018) · Zbl 1395.81253
[31] Garoufalidis, S.; Craig Hodgson, J.; Rubinstein, H.; Segerman, H., 1-efficient triangulations and the index of a cusped hyperbolic 3-manifold, Geom. Topol., 19, 5, 2619-2689 (2015) · Zbl 1330.57029 · doi:10.2140/gt.2015.19.2619
[32] Garoufalidis, S.; Koutschan, C., Irreducibility of \(q\)-difference operators and the knot \(7_4\), Algebr. Geom. Topol., 13, 6, 3261-3286 (2013) · Zbl 1311.57017 · doi:10.2140/agt.2013.13.3261
[33] Garoufalidis, S.; Kashaev, R., From state integrals to \(q\)-series, Math. Res. Lett., 24, 3, 781-801 (2017) · Zbl 1407.57010 · doi:10.4310/MRL.2017.v24.n3.a8
[34] Garoufalidis, S.; Lê, TTQ, The colored Jones function is \(q\)-holonomic, Geom. Topol., 9, 1253-1293 (2005) · Zbl 1078.57012 · doi:10.2140/gt.2005.9.1253
[35] Garoufalidis, S.; Lê, TTQ, A survey of \(q\)-holonomic functions, Enseign. Math., 62, 3-4, 501-525 (2016) · Zbl 1373.33030 · doi:10.4171/LEM/62-3/4-7
[36] Garoufalidis, S.; Lauda, AD; Lê, TTQ, The colored HOMFLYPT function is \(q\)-holonomic, Duke Math. J., 167, 3, 397-447 (2018) · Zbl 1414.57012 · doi:10.1215/00127094-2017-0030
[37] Gaiotto, D.; Moore, GW; Neitzke, A., Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys., 299, 1, 163-224 (2010) · Zbl 1225.81135 · doi:10.1007/s00220-010-1071-2
[38] Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing in coupled 2d-4d systems. J. High Energy Phys. (12), 082 (2012) · Zbl 1397.81364
[39] Gaiotto, D.; Moore, GW; Neitzke, A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math., 234, 239-403 (2013) · Zbl 1358.81150 · doi:10.1016/j.aim.2012.09.027
[40] Gukov, S., Mariño, M., Putrov, P.: Resurgence in complex Chern-Simons theory. arXiv:1605.07615, Preprint (2016)
[41] Garoufalidis, S., Murthy, S., Don, Z.: Multiple sine functions and meromorphic quantum jacobi forms, Preprint (2021)
[42] Gukov, S., Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial, Commun. Math. Phys., 255, 3, 577-627 (2005) · Zbl 1115.57009 · doi:10.1007/s00220-005-1312-y
[43] Garoufalidis, S., Wheeler, C.: Periods, the meromorphic 3D-index and the Turaev-Viro invariant. arXiv:2209.02843, Preprint (2022)
[44] Garoufalidis, S., Zagier, D.: Knots and their related \(q\)-series. arXiv:2304.09377, Preprint (2023)
[45] Garoufalidis, S., Zagier, D.: Knots, perturbative series and quantum modularity. arXiv:2111.06645, Preprint (2021)
[46] Hikami, K., Generalized volume conjecture and the \(A\)-polynomials: the Neumann-Zagier potential function as a classical limit of the partition function, J. Geom. Phys., 57, 9, 1895-1940 (2007) · Zbl 1139.57013 · doi:10.1016/j.geomphys.2007.03.008
[47] Jones, V., Hecke algebra representations of braid groups and link polynomials, Ann. Math. (2), 126, 2, 335-388 (1987) · Zbl 0631.57005 · doi:10.2307/1971403
[48] Kubert, D.S., Lang, S.: Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 244. Springer-Verlag, New York-Berlin (1981) · Zbl 0492.12002
[49] Klemm, A.; Lerche, W.; Mayr, P.; Vafa, C.; Warner, N., Self-dual strings and \(N=2\) supersymmetric field theory, Nucl. Phys. B, 477, 3, 746-764 (1996) · Zbl 0925.81196 · doi:10.1016/0550-3213(96)00353-7
[50] Kontsevich, M.: Exponential integrals, Lefschetz thimbles and linear resurgence, June 2020, ReNewQuantum seminar. https://renewquantum.eu/docs/Lecture_slides_MaximKontsevich_June2020.pdf (2020)
[51] Koutschan, C.: Advanced applications of the holonomic systems approach, Ph.D. thesis, RISC, Johannes Kepler University, Linz, Austria (2009) · Zbl 1344.68301
[52] Koutschan, C.: HolonomicFunctions (user’s guide), Tech. Report 10-01, RISC Report Series, Johannes Kepler University Linz (2010)
[53] Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. arXiv:0811.2435, Preprint (2008) · Zbl 1248.14060
[54] Kontsevich, M.; Soibelman, Y., Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys., 5, 2, 231-352 (2011) · Zbl 1248.14060 · doi:10.4310/CNTP.2011.v5.n2.a1
[55] Kontsevich, M., Soibelman, Y.: Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry, Homological mirror symmetry and tropical geometry, Lect. Notes Unione Mat. Ital., vol. 15, Springer, Cham, pp. 197-308 (2014) · Zbl 1326.14042
[56] Miller, P., Applied Asymptotic Analysis, Graduate Studies in Mathematics (2006), Providence: American Mathematical Society, Providence · Zbl 1101.41031
[57] Mariño, M., Lectures on non-perturbative effects in large \(N\) gauge theories, matrix models and strings, Fortsch. Phys., 62, 455-540 (2014) · Zbl 1338.81335 · doi:10.1002/prop.201400005
[58] Mariño, M., Instantons and Large \(N\). An Introduction to Non-perturbative Methods in Quantum Field Theory (2015), Cambridge: Cambridge University Press, Cambridge · Zbl 1335.81014
[59] Mariño, M.; Zakany, S., Exact Eigenfunctions and the open topological string, J. Phys. A, 50, 32, 325401, 50 (2017) · Zbl 1387.81289 · doi:10.1088/1751-8121/aa791e
[60] Mitschi, C., Sauzin, D.: Divergent Series, Summability and Resurgence. I. Lecture Notes in Mathematics, vol. 2153, Springer (2016) · Zbl 1355.34003
[61] Neumann, WD; Zagier, D., Volumes of hyperbolic three-manifolds, Topology, 24, 3, 307-332 (1985) · Zbl 0589.57015 · doi:10.1016/0040-9383(85)90004-7
[62] Pasquetti, S.: Factorisation of \(n=2\) theories on the squashed 3-sphere. J. High Energy Phys., no. 4, 120 (2012) · Zbl 1348.81430
[63] Petkovsek, M., Wilf, H.S., Zeilberger, D.: \(A=B\), A K Peters Ltd., Wellesley, MA,: With a foreword by Donald E. Knuth, With a separately available computer disk (1996) · Zbl 0848.05002
[64] Swarttouw, R.F.: The Hahn-Exton q-Bessel function, ProQuest LLC, Ann Arbor, MI, 1992, Thesis (Dr.)-Technische Universiteit Delft (The Netherlands) · Zbl 0759.33008
[65] Thurston, W.: The Geometry and Topology of 3-Manifolds, Universitext, Springer-Verlag, Berlin. Princeton, Lecture notes (1977)
[66] Terashima, Y.; Yamazaki, M., Semiclassical analysis of the 3d/3d relation, Phys. Rev. D, 88, 2 (2013) · doi:10.1103/PhysRevD.88.026011
[67] Voros, A., The return of the quartic oscillator: the complex WKB method, Ann. Inst. H. Poincaré Sect. A (N.S.), 39, 3, 211-338 (1983) · Zbl 0526.34046
[68] Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 3, 351-399 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
[69] Witten, E., Quantization of Chern-Simons gauge theory with complex gauge group, Commun. Math. Phys., 137, 1, 29-66 (1991) · Zbl 0717.53074 · doi:10.1007/BF02099116
[70] Witten, E., Analytic continuation Of Chern-Simons theory, AMS/IP Stud. Adv. Math., 50, 347-446 (2011) · Zbl 1337.81106 · doi:10.1090/amsip/050/19
[71] Wilf, HS; Zeilberger, D., An algorithmic proof theory for hypergeometric (ordinary and \(q)\) multisum/integral identities, Invent. Math., 108, 3, 575-633 (1992) · Zbl 0739.05007 · doi:10.1007/BF02100618
[72] Zeilberger, D., A holonomic systems approach to special functions identities, J. Comput. Appl. Math., 32, 3, 321-368 (1990) · Zbl 0738.33001 · doi:10.1016/0377-0427(90)90042-X
[73] Zinn-Justin, J.: Quantum field theory and critical phenomena, second ed., International Series of Monographs on Physics, vol. 85, The Clarendon Press, Oxford University Press, New York, Oxford Science Publications (1993) · Zbl 1033.81006
[74] Zwegers, S.: Mock \(\theta \)-functions and real analytic modular forms, \(q\)-series with applications to combinatorics, number theory, and physics (Urbana, IL,: Contemp. Math., vol. 291, Amer. Math. Soc. Providence, RI 2001, 269-277 (2000) · Zbl 1044.11029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.