×

An improved M-SPEM for modeling complex hydroelastic fluid-structure interaction problems. (English) Zbl 07696989

Summary: Hydroelastic fluid-structure interaction (FSI) problems usually involve nonlinear free surface flows, large structure deformations and changing interfaces, which present great challenges for numerical modeling. To deal with violent FSIs, the authors proposed a multi-resolution smoothed particle element method (M-SPEM), which adaptively simulates local fluid regions with an improved smoothed particle hydrodynamics (SPH) method and models other solid/fluid regions with a smoothed finite element method (S-FEM). Both computational accuracy in local fluid domain and entire efficiency can be improved by M-SPEM compared with the conventional partitioned FSI solvers based on SPH-FEM coupling schemes. In this work, an improved M-SPEM is developed and extended to simulate the complex hydroelastic FSI problems with structural deformations considered in the numerical model. To solve the accuracy reduction problem in the multi-resolution simulations, we developed a velocity and position correction technique for the generated fluid and virtual particles. The computational results demonstrated that the new correction technique can effectively improve the computational accuracy of M-SPEM while the corrected schemes produce results very close to the reference ones. The positions of the generated particles should also be appropriately optimized during the element-particle conversion process. With both accuracy and efficiency improved, the improved M-SPEM is proven to be suitable to deal with some challenging hydroelastic FSI problems.

MSC:

76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
74Fxx Coupling of solid mechanics with other effects
Full Text: DOI

References:

[1] Hou, G.; Wang, J.; Layton, A., Numerical methods for fluid-structure interaction—a review, Commun. Comput. Phys., 12, 337-377 (2015) · Zbl 1373.76001
[2] Zarruk, G. A.; Brandner, P. A.; Pearce, B. W.; Phillips, A. W., Experimental study of the steady fluid– structure interaction of flexible hydrofoils, J. Fluids Struct., 51, 326-343 (2014)
[3] Griffith, B. E.; Patankar, N. A., Immersed methods for fluid-structure interaction, Annu. Rev. Fluid Mech., 52, 421-448 (2020) · Zbl 1439.76140
[4] Borazjani, I.; Ge, L.; Sotiropoulos, F., Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies, J. Comput. Phys., 227, 7587-7620 (2008) · Zbl 1213.76129
[5] Khayyer, A.; Gotoh, H.; Shimizu, Y., On systematic development of FSI solvers in the context of particle methods, J. Hydrodyn., 34, 395-407 (2022)
[6] Luo, M.; Khayyer, A.; Lin, P., Particle methods in ocean and coastal engineering, Appl. Ocean Res., 114, Article 102734 pp. (2021)
[7] Rabczuk, T.; Belytschko, T., A three-dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. Methods Appl. Mech. Eng., 196, 2777-2799 (2007) · Zbl 1128.74051
[8] Rabczuk, T.; Gracie, R.; Song, J.; Belytschko, T., Immersed particle method for fluid-structure interaction, Int. J. Numer. Methods Eng., 81, 48-71 (2010) · Zbl 1183.74367
[9] Monaghan, J. J., Smoothed particle hydrodynamics and its diverse applications, Annu. Rev. Fluid Mech., 44, 323-346 (2012) · Zbl 1361.76019
[10] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., Two-dimensional SPH simulations of wedge water entries, J. Comput. Phys., 213, 803-822 (2006) · Zbl 1088.76056
[11] Rezavand, M.; Zhang, C.; Hu, X. Y., A weakly compressible SPH method for violent multi-phase flows with high density ratio, J. Comput. Phys., 402, Article 109092 pp. (2020) · Zbl 1453.76170
[12] He, F.; Zhang, H.; Huang, C.; Liu, M., A stable SPH model with large CFL numbers for multi-phase flows with large density ratios, J. Comput. Phys., 453, Article 110944 pp. (2022) · Zbl 07517716
[13] Panciroli, R.; Abrate, S.; Minak, G.; Zucchelli, A., Hydroelasticity in water-entry problems: comparison between experimental and SPH results, Compos. Struct., 94, 532-539 (2012)
[14] O’Connor, J.; Rogers, B. D., A fluid-structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU, J. Fluids Struct., 104, Article 103312 pp. (2021)
[15] Liu, M. B.; Zhang, Z. L., Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions, Sci. China, Phys. Mech. Astron., 62, Article 984701 pp. (2019)
[16] Matsunaga, T.; Koshizuka, S., Stabilized LSMPS method for complex free-surface flow simulation, Comput. Methods Appl. Mech. Eng., 389, Article 114416 pp. (2022) · Zbl 1507.76168
[17] Zha, R.; Peng, H.; Qiu, W., An improved higher-order moving particle semi-implicit method for simulations of two dimensional hydroelastic slamming, Phys. Fluids, 33, Article 037104 pp. (2021)
[18] Sun, Z.; Djidjeli, K.; Xing, J. T.; Cheng, F., Modified MPS method for the 2D fluid structure interaction problem with free surface, Comput. Fluids, 122, 47-65 (2015) · Zbl 1390.76769
[19] Gotoh, H.; Khayyer, A.; Shimizu, Y., Entirely Lagrangian meshfree computational methods for hydroelastic fluid-structure interactions in ocean engineering—reliability, adaptivity and generality, Appl. Ocean Res., 115, Article 102822 pp. (2021)
[20] Yang, X.; Liu, M., Particle-based modeling of asymmetric flexible fibers in viscous flows, Commun. Comput. Phys., 22, 1015-1027 (2017) · Zbl 1488.76110
[21] Yang, X.; Liu, M.; Peng, S., Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids, Phys. Rev. E, 90, Article 063011 pp. (2014)
[22] Yao, X.; Huang, D., Coupled PD-SPH modeling for fluid-structure interaction problems with large deformation and fracturing, Comput. Struct., 270, Article 106847 pp. (2022)
[23] Monteleone, A.; Borino, G.; Napoli, E.; Burriesci, G., Fluid-structure interaction approach with smoothed particle hydrodynamics and particle-spring systems, Comput. Methods Appl. Mech. Eng., 392, Article 114728 pp. (2022) · Zbl 1507.74131
[24] Sun, Y.; Xi, G.; Sun, Z., A fully Lagrangian method for fluid-structure interaction problems with deformable floating structure, J. Fluids Struct., 90, 379-395 (2019)
[25] Xie, F.; Zhao, W.; Wan, D., MPS-DEM coupling method for interaction between fluid and thin elastic structures, Ocean Eng., 236, Article 109449 pp. (2021)
[26] Zhan, L.; Peng, C.; Zhang, B.; Wu, W., A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid-structure interaction, J. Fluids Struct., 86, 329-353 (2019)
[27] Sun, P.; Le Touzé, D.; Oger, G.; Zhang, A., An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions, Ocean Eng., 221, Article 108552 pp. (2021)
[28] Khayyer, A.; Shimizu, Y.; Gotoh, H.; Nagashima, K., A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures, Appl. Math. Model., 242-271 (2021) · Zbl 1481.74155
[29] Fourey, G.; Hermange, C.; Letouzé, D.; Oger, G., An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods, Comput. Phys. Commun., 217, 66-81 (2017) · Zbl 1411.76130
[30] Hu, D.; Long, T.; Xiao, Y.; Han, X.; Gu, Y., Fluid-structure interaction analysis by coupled FE-SPH model based on a novel searching algorithm, Comput. Methods Appl. Mech. Eng., 276, 266-286 (2014) · Zbl 1423.74272
[31] Long, T.; Hu, D.; Wan, D.; Zhuang, C.; Yang, G., An arbitrary boundary with ghost particles incorporated in coupled FEM-SPH model for FSI problems, J. Comput. Phys., 350, 166-183 (2017) · Zbl 1380.74032
[32] Zhang, Z. L.; Khalid, M. S.U.; Long, T.; Chang, J. Z.; Liu, M. B., Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method, J. Fluids Struct., 94, Article 102942 pp. (2020)
[33] Zhang, Z. L.; Khalid, M. S.U.; Long, T.; Liu, M. B.; Shu, C., Improved element-particle coupling strategy with δ-SPH and particle shifting for modeling sloshing with rigid or deformable structures, Appl. Ocean Res., 114, Article 102774 pp. (2021)
[34] Fuchs, S. L.; Meier, C.; Wall, W. A.; Cyron, C. J., A novel smoothed particle hydrodynamics and finite element coupling scheme for fluid-structure interaction: the sliding boundary particle approach, Comput. Methods Appl. Mech. Eng., 383, Article 113922 pp. (2021) · Zbl 1506.76148
[35] Hermange, C.; Oger, G.; Le Chenadec, Y.; Le Touzé, D., A 3D SPH-FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground, Comput. Methods Appl. Mech. Eng., 355, 558-590 (2019) · Zbl 1441.74064
[36] McLoone, M.; Quinlan, N. J., Coupling of the meshless finite volume particle method and the finite element method for fluid-structure interaction with thin elastic structures, Eur. J. Mech. B, Fluids, 92, 117-131 (2022) · Zbl 07463931
[37] Sauer, M.; Hiermaier, S.; Scheffer, U., Modeling penetration events using FE/MLSPH adaptive coupling, (Intern. Symp. on the Interaction of the Effects of Munitions with Structures (10th ISIEMS). Intern. Symp. on the Interaction of the Effects of Munitions with Structures (10th ISIEMS), San Diego, California, USA (2001)), 6.7-6.11
[38] Sauer, M., Simulation of high velocity impact in fluid-filled containers using finite elements with adaptive coupling to smoothed particle hydrodynamics, Int. J. Impact Eng., 38, 511-520 (2011)
[39] Zhang, Y.; Wan, D., MPS-FEM coupled method for sloshing flows in an elastic tank, Ocean Eng., 152, 416-427 (2018)
[40] Li, M.; Lian, Y.; Zhang, X., An immersed finite element material point (IFEMP) method for free surface fluid-structure interaction problems, Comput. Methods Appl. Mech. Eng., 393, Article 114809 pp. (2022) · Zbl 1507.74125
[41] Feldman, J.; Bonet, J., Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems, Int. J. Numer. Methods Eng., 72, 295-324 (2007) · Zbl 1194.76229
[42] MacNeice, P.; Olson, K. M.; Mobarry, C.; de Fainchtein, R.; Packer, C., PARAMESH: a parallel adaptive mesh refinement community toolkit, Comput. Phys. Commun., 126, 330-354 (2000) · Zbl 0953.65088
[43] Freret, L.; Williamschen, M.; Groth, C. P.T., Enhanced anisotropic block-based adaptive mesh refinement for three-dimensional inviscid and viscous compressible flows, J. Comput. Phys., 458, Article 111092 pp. (2022) · Zbl 07527719
[44] Vacondio, R.; Rogers, B. D.; Stansby, P. K.; Mignosa, P.; Feldman, J., Variable resolution for SPH: a dynamic particle coalescing and splitting scheme, Comput. Methods Appl. Mech. Eng., 256, 132-148 (2013) · Zbl 1352.76100
[45] Vacondio, R.; Rogers, B. D.; Stansby, P. K., Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing, Int. J. Numer. Methods Fluids, 69, 1377-1410 (2012) · Zbl 1253.76108
[46] Chiron, L.; Oger, G.; Leffe, M. D.; Touzé, D. L., Analysis and improvements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerations, J. Comput. Phys., 354, 552-575 (2018) · Zbl 1380.76117
[47] Khayyer, A.; Tsuruta, N.; Shimizu, Y.; Gotoh, H., Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering, Appl. Ocean Res., 397-414 (2019)
[48] Zhang, C.; Rezavand, M.; Zhu, Y.; Yu, Y.; Wu, D.; Zhang, W.; Wang, J.; Hu, X., SPHinXsys: an open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamics, Comput. Phys. Commun., 267, Article 108066 pp. (2021) · Zbl 1538.76002
[49] Lyu, H.; Sun, P.; Zhang, M. J.A., 3D multi-resolution SPH modeling of the water entry dynamics of free-fall lifeboats, Ocean Eng., 257, Article 111648 pp. (2022)
[50] Hu, W.; Guo, G.; Hu, X.; Negrut, D.; Xu, Z.; Pan, W., A consistent spatially adaptive smoothed particle hydrodynamics method for fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 347, 402-424 (2019) · Zbl 1440.76111
[51] Hu, W.; Trask, N.; Hu, X.; Pan, W., A spatially adaptive high-order meshless method for fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 355, 67-93 (2019) · Zbl 1441.76061
[52] Gao, T.; Qiu, H.; Fu, L., A block-based adaptive particle refinement SPH method for fluid-structure interaction problems, Comput. Methods Appl. Mech. Eng., 399, Article 115356 pp. (2022) · Zbl 1507.76158
[53] Yang, X.; Kong, S.; Liu, M.; Liu, Q., Smoothed particle hydrodynamics with adaptive spatial resolution (SPH-ASR) for free surface flows, J. Comput. Phys., 443, Article 110539 pp. (2021) · Zbl 07515438
[54] Li, Z.; Oger, G.; Le Touzé, D., A partitioned framework for coupling LBM and FEM through an implicit IBM allowing non-conforming time-steps: application to fluid-structure interaction in biomechanics, J. Comput. Phys., 449, Article 110786 pp. (2022) · Zbl 07524783
[55] Zhang, Z. L.; Long, T.; Chang, J. Z.; Liu, M. B., A smoothed particle element method (SPEM) for modeling fluid-structure interaction problems with large fluid deformations, Comput. Methods Appl. Mech. Eng., 356, 261-293 (2019) · Zbl 1441.76097
[56] Long, T.; Zhang, Z.; Liu, M., Multi-resolution technique integrated with smoothed particle element method (SPEM) for modeling fluid-structure interaction problems with free surfaces, Sci. China, Phys. Mech. Astron., 64, Article 284711 pp. (2021)
[57] Liu, M. B.; Liu, G. R., Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch. Comput. Methods Eng., 17, 25-76 (2010) · Zbl 1348.76117
[58] Huang, C.; Zhang, D. H.; Si, Y. L.; Shi, Y. X.; Lin, Y. G., Coupled finite particle method for simulations of wave and structure interaction, Coast. Eng., 140, 147-160 (2018)
[59] Chen, D.; Huang, W.; Sloan, S. W., An alternative updated Lagrangian formulation for finite particle method, Comput. Methods Appl. Mech. Eng., 343, 490-505 (2019) · Zbl 1440.76108
[60] Zhang, Z. L.; Liu, M. B., A decoupled finite particle method for modeling incompressible flows with free surfaces, Appl. Math. Model., 60, 606-633 (2018) · Zbl 1480.65308
[61] Zhang, Z. L.; Walayat, K.; Chang, J. Z.; Liu, M. B., Meshfree modeling of a fluid-particle two-phase flow with an improved SPH method, Int. J. Numer. Methods Eng., 116, 530-569 (2018) · Zbl 07865042
[62] Jiao, T.; Ye, M.; Jin, M.; Yang, J., Decoupled finite particle method with normalized kernel (DFPM-NK): a computationally efficient method for simulating solute transport in heterogeneous porous media, Water Resour. Res., 58, 1-18 (2022)
[63] Jiao, T.; Ye, M.; Jin, M.; Yang, J., An interactively corrected smoothed particlehydrodynamics (IC-SPH) for simulating solute transport in a non-uniform velocity field, Water Resour. Res., 58, 1-25 (2022)
[64] He, L.; Liu, S.; Gan, Y.; Seaid, M.; Niu, C., Development of time-space adaptive smoothed particle hydrodynamics method with Runge-Kutta Chebyshev scheme, Eng. Anal. Bound. Elem., 126, 55-67 (2021) · Zbl 1464.76138
[65] Antuono, M.; Colagrossi, A.; Marrone, S.; Molteni, D., Freesurface flows solved by means of SPH schemes with numerical diffusive terms, Comput. Phys. Commun., 181, 532-549 (2010) · Zbl 1333.76055
[66] Marrone, S.; Antuono, M.; Colagrossi, A.; Colicchio, G.; Touzé, D. L.; Graziani, G., δ-SPH model for simulating violent impact flows, Comput. Methods Appl. Mech. Eng., 200, 1526-1542 (2011) · Zbl 1228.76116
[67] Lind, S. J.; Xu, R.; Stansby, P. K.; Rogers, B. D., Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, J. Comput. Phys., 231, 1499-1523 (2012) · Zbl 1286.76118
[68] Huang, C.; Zhang, D. H.; Shi, Y. X.; Si, Y. L.; Huang, B., Coupled finite particle method with a modified particle shifting technology, Int. J. Numer. Methods Eng., 113, 179-207 (2018)
[69] Belytschko, T.; Guo, Y.; Liu, W. K.; Xiao, S. P., A unified stability analysis of meshfree particle methods, Int. J. Numer. Methods Eng., 48, 1359-1400 (2000) · Zbl 0972.74078
[70] Liu, G. R.; Nguyen, T. T.; Dai, K. Y.; Lam, K. Y., Theoretical aspects of the smoothed finite element method (SFEM), Int. J. Numer. Methods Eng., 71, 902-930 (2007) · Zbl 1194.74432
[71] He, T., Modeling fluid-structure interaction with the edge-based smoothed finite element method, J. Comput. Phys., 460, Article 111171 pp. (2022) · Zbl 07525155
[72] Nguyen-Thoi, T.; Vu-Do, H. C.; Rabczuk, T.; Nguyen-Xuan, H., A node-based smoothed finite element method (NSFEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes, Comput. Methods Appl. Mech. Eng., 199, 3005-3027 (2010) · Zbl 1231.74432
[73] Zeng, W.; Liu, G. R., Smoothed finite element methods (S-FEM): an overview and recent developments, Arch. Comput. Methods Eng., 25, 1-39 (2016)
[74] Runnels, B.; Agrawal, V.; Zhang, W.; Almgren, A., Massively parallel finite difference elasticity using block-structured adaptive mesh refinement with a geometric multigrid solver, J. Comput. Phys., 427, Article 110065 pp. (2021) · Zbl 07510250
[75] Schmidmayer, K.; Petitpas, F.; Daniel, E., Adaptive mesh refinement algorithm based on dual trees for cells and faces for multiphase compressible flows, J. Comput. Phys., 388, 252-278 (2019) · Zbl 1452.76132
[76] Shibata, K.; Koshizuka, S.; Matsunaga, T.; Masaie, I., The overlapping particle technique for multi-resolution simulation of particle methods, Comput. Methods Appl. Mech. Eng., 325, 434-462 (2017) · Zbl 1439.76132
[77] Bian, X.; Li, Z.; Karniadakis, G. E., Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition, J. Comput. Phys., 297, 132-155 (2015) · Zbl 1349.76663
[78] Zhang, C.; Rezavand, M.; Hu, X., A multi-resolution SPH method for fluid-structure interactions, J. Comput. Phys., 429, Article 110028 pp. (2021) · Zbl 07500760
[79] Khayyer, A.; Shimizu, Y.; Gotoh, H.; Hattori, S., Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering, Ocean Eng., 226, Article 108652 pp. (2021)
[80] Chen, C.; Shi, W.; Shen, Y.; Chen, J.; Zhang, A., A multi-resolution SPH-FEM method for fluid-structure interactions, Comput. Methods Appl. Mech. Eng., Article 115659 pp. (2022) · Zbl 1507.74117
[81] Yang, X.; Liu, M.; Peng, S.; Huang, C., Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH-EBG method, Coast. Eng., 108, 56-64 (2016)
[82] Antoci, C.; Gallati, M.; S, S., Numerical simulation of fluid-structure interfaction by SPH, Comput. Struct., 85, 879-890 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.