×

Functional equation of Mordell-Tornheim multiple zeta function. (English) Zbl 07682943

For a given positive integer \(r\), the Mordell-Tornheim multiple zeta function is defined by \[ \zeta_{MT,r}(s_1,\ldots, s_r;s_{r+1})=\sum_{n_1, n_2, \ldots, n_r \in \mathbb{N}}\frac{1}{n_1^{s_1}n_2^{s_2}\cdots n_r^{s_r}(n_1+\cdots +n_r)^{s_{r+1}}} \] on the subset \(V_{r+1}=\lbrace (s_1,\ldots,s_r,s_{r+1}); \operatorname{Re}(s_{r+1})+ \sum_{\ell=1}^j \operatorname{Re}(s_{k_\ell})>j\) with \( 1 \leq k_1 < \cdots < k_j \leq r\) for any \(j = 1,\ldots, r \rbrace\) of \(\mathbb{C}^{r+1}\). The function \(\zeta_{MT,r}\) is holomorphic on \(V_{r+1}\) and it can be meromorphically continued to the whole \(\mathbb{C}^{r+1}\). By showing a relation between the Mordell-Tornheim multiple zeta-function \(\zeta_{MT,r}\) and the confluent hypergeometric function \[ \Psi(a,c;x)=\frac{1}{\Gamma(a)}\int_{0}^{ e^{i\phi}\infty}e^{-xy}y^{a-1}(1+y)^{c-a-1}\, dy, \] where \(\operatorname{Re} (a) >0,\, -\pi <\phi < \pi,\, | \phi + \arg x| < \frac{\pi}{2}\), T. Okamoto and T. Onozuka established the functional equation for the Mordell-Tornheim multiple zeta-function \(\zeta_{MT,r}\) [Funct. Approximatio, Comment. Math. 55, No. 2, 227–241 (2016; Zbl 1406.11086)].
The aim of this note is to give an alternative and relatively simple proof of the functional equation for the Mordell-Tornheim multiple zeta-function \(\zeta_{MT,r}\) based on the prior work of F. V. Atkinson [Acta Math. 81, 353–376 (1949; Zbl 0036.18603)] for double zeta function during the study of the mean-value of the Riemann zeta function.

MSC:

11M32 Multiple Dirichlet series and zeta functions and multizeta values
Full Text: DOI

References:

[1] Atkinson, F. V., The mean-value of the Riemann zeta-function, Acta Math.81 (1949) 353-376. · Zbl 0036.18603
[2] Choie, Y. and Matsumoto, K., Functional equations for double series of Euler type with coefficients, Adv. Math.292 (2016) 529-557. · Zbl 1408.11046
[3] Erdélyi, A., Higher Transcendental Functions, Vol. I (McGraw-Hill Book Co., Inc., New York, Toronto, London, 1953). · Zbl 0051.30303
[4] Ivić, A., Lectures on Mean Values of the Riemann Zeta Function (Springer-Verlag, Berlin, 1991). · Zbl 0758.11036
[5] Matsumoto, K., On the analytic continuation of various multiple zeta-functions, in Number Theory for the Millennium, II, eds. Peters, A. K. and Natick, M. A. (Urbana, IL, 2000), pp. 417-440. · Zbl 1031.11051
[6] Matsumoto, K., On Mordell-Tornheim and other multiple zeta-functions, in Proc. Session in Analytic Number Theory and Diophantine Equations (, Vol. 360 (University of Bonn, Bonn, 2003), pp. 1-17. · Zbl 1056.11049
[7] Matsumoto, K., Functional equations for double zeta-functions, Math. Proc. Cambridge Philos. Soc.136(1) (2004) 1-7. · Zbl 1087.11058
[8] Mordell, L. J., On the evaluation of some multiple series, J. London Math. Soc.33 (1958) 368-371. · Zbl 0081.27501
[9] Okamoto, T. and Onozuka, T., Functional equation for the Mordell-Tornheim multiple zeta function, Funct. Approx. Comment. Math.55(2) (2016) 227-241. · Zbl 1406.11086
[10] Tornheim, L., Harmonic double series, Amer. J. Math.72 (1950) 303-314. · Zbl 0036.17203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.