×

A few more dissimilarities between second-order arithmetic and set theory. (English) Zbl 07680019

Summary: Second-order arithmetic and class theory are second-order theories of mathematical subjects of foundational importance, namely, arithmetic and set theory. Despite the similarity in appearance, there turned out to be significant mathematical dissimilarities between them. The present paper studies various principles in class theory, from such a comparative perspective between second-order arithmetic and class theory, and presents a few new dissimilarities between them.

MSC:

03E30 Axiomatics of classical set theory and its fragments

References:

[1] Afshari, B.; Rathjen, M., Reverse mathematics and well-ordering principles: a pilot study, Ann. Pure Appl. Logic, 160, 231-237 (2009) · Zbl 1183.03008 · doi:10.1016/j.apal.2009.01.001
[2] Avigad, J., On the relationships between \(\mathit{ATR}_0\) and \({\widehat{ID}}_{< \omega } \), J. Symb. Logic, 61, 3, 768-779 (1996) · Zbl 0858.03052 · doi:10.2307/2275783
[3] Barwise, J., Admissible Sets and Structures (1975), Berlin: Springer, Berlin · Zbl 0316.02047 · doi:10.1007/978-3-662-11035-5
[4] Barwise, J.; Gandy, R.; Moschovakis, Y., The next admissible set, J. Symb. Logic, 36, 108-120 (1971) · Zbl 0236.02033 · doi:10.2307/2271519
[5] Blass, A., Dimitriou, I.M., Löwe, B.: Inaccessible cardinals without the axiom of choice. Fundam. Math. 194 (2007) · Zbl 1116.03045
[6] Drake, FR, Set Theory: An Introduction to Large Cardinals (1974), Amsterdam: North-Holland, Amsterdam · Zbl 0294.02034
[7] Fujimoto, K., Classes and truths in set theory, Ann. Pure Appl. Logic, 163, 1484-1523 (2012) · Zbl 1300.03010 · doi:10.1016/j.apal.2011.12.006
[8] Fujimoto, K., Truths, inductive definitions, and Kripke-Platek systems over set theory, J. Symb. Logic, 83, 868-898 (2018) · Zbl 1475.03070 · doi:10.1017/jsl.2017.77
[9] Hájek, P.; Pudlak, P., Metamathematics of First-Order Arithmetic (1993), Berlin: Springer, Berlin · Zbl 0781.03047 · doi:10.1007/978-3-662-22156-3
[10] Hamkins, J.D., Woodin, W.H.: Open class determinacy is preserved by forcing. arXiv preprint arXiv:1806.11180 (2018)
[11] Jäger, G., Zur beweistheorie der Kripke-Platek-mengenlehre uber den naturlichen zahlen, Arch. Math. Logik Grundlagenforsc., 22, 121-139 (1982) · Zbl 0503.03014 · doi:10.1007/BF02297652
[12] Jäger, G., Theories for Admissible Sets: A Unifying Approach to Proof Theory (1986), Naples: Bibliopolice, Naples · Zbl 0638.03052
[13] Jäger, G., Full operational set theory with unbounded existential quantification and power set, Ann. Pure Appl. Logic, 160, 33-52 (2009) · Zbl 1175.03037 · doi:10.1016/j.apal.2009.01.010
[14] Jäger, G., Short note: least fixed points versus least closed points, Arch. Math. Logic, 60, 831-835 (2021) · Zbl 1484.03124 · doi:10.1007/s00153-021-00761-y
[15] Jäger, G., Krähenbühl, J.: \( \Sigma^1_1\) choice in a theory of sets and classes. In: Schindler, R. (ed.). Ways of Proof Theory, pp. 283-314. Ontos Verlag, Frankfurt (2010) · Zbl 1244.03165
[16] Jäger, G.; Strahm, T., Bar induction and \(\omega\) model reflection, Ann. Pure Appl. Logic, 97, 221-230 (1999) · Zbl 0930.03087 · doi:10.1016/S0168-0072(98)00056-6
[17] Kanamori, A., The Higher Infinite (2003), Berlin: Springer, Berlin · Zbl 1022.03033
[18] Krähenbühl, J.: On the relationship between choice schemes and iterated class comprehension in set theory. PhD thesis, Universität Bern (2011)
[19] Moschovakis, Y.: Elementary Induction on Abstract Structures. Number 77 in Studies in Logic and the Foundation of Mathematics. North Holland, Amsterdam (1974) · Zbl 0307.02003
[20] Pohlers, W.: Subsystems of set theory and second order number theory. In: Buss, S. (ed.). Handbook of Proof Theory, pp. 209-336. Elsevier, Amsterdam (1998) · Zbl 0940.03066
[21] Rathjen, M.: Fragments of Kripke-Platek set theory with infinity. In: Aczel, P., Simmons, H., Wainer, S. (ed.). Proof Theory, pp. 252-273. Cambridge University Press, Cambridge (1992) · Zbl 0791.03031
[22] Sato, K., Relative predicativity and dependent recursion in second-order set theory and higher-order theories, J. Symb. Logic, 79, 712-732 (2014) · Zbl 1353.03073 · doi:10.1017/jsl.2014.28
[23] Sato, K., Full and hat inductive definitions are equivalent in \(\mathit{NBG} \), Arch. Math. Logic, 54, 75-112 (2015) · Zbl 1342.03042 · doi:10.1007/s00153-014-0403-x
[24] Simpson, S.G.: \( \Sigma^1_1\) and \(\Pi^1_1\) transfinite induction. In Van Dalen, D., Lascar, D., Smiley, T.J. (eds.). Logic Colloquium ’80, Studies in Logic and the Foundation of Mathematics, pp. 239-253. North-Holland (1982) · Zbl 0497.03045
[25] Simpson, S.G.: Subsystems of Second Order Arithmetic. Cambridge University Press, Cambridge (2009) · Zbl 1181.03001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.