×

How majority-vote crossover and estimation-of-distribution algorithms cope with fitness valleys. (English) Zbl 07676461

Summary: The benefits of using crossover in crossing fitness gaps have been studied extensively in evolutionary computation. Recent runtime results show that majority-vote crossover is particularly efficient at optimizing the well-known Jump benchmark function that includes a fitness gap next to the global optimum. Also estimation-of-distribution algorithms (EDAs), which use an implicit crossover, are much more efficient on Jump than typical mutation-based algorithms. However, the allowed gap size for polynomial runtimes with EDAs is at most logarithmic in the problem dimension \(n\).
In this paper, we investigate variants of the Jump function where the gap is shifted and appears in the middle of the typical search trajectory. Such gaps can still be overcome efficiently in time \(O(n \log n)\) by majority-vote crossover and an estimation-of-distribution algorithm, even for gap sizes almost \(\sqrt{n}\). However, if the global optimum is located in the gap instead of the usual all-ones string, majority-vote crossover would nevertheless approach the all-ones string and be highly inefficient. In sharp contrast, an EDA can still find such a shifted optimum efficiently. Thanks to a general property called fair sampling, the EDA will with high probability sample from almost every fitness level of the function, including levels in the gap, and sample the global optimum even though the overall search trajectory points towards the all-ones string. Finally, we derive limits on the gap size allowing efficient runtimes for the EDA.

MSC:

68Qxx Theory of computing

References:

[1] Ackley, D., A Connectionist Machine for Genetic Hillclimbing (1987), Springer
[2] Antipov, D.; Doerr, B.; Karavaev, V., A rigorous runtime analysis of the (1 + (λ, λ)) GA on jump functions, Algorithmica, 84, 1573-1602 (2022) · Zbl 1537.68228
[3] Baillon, J. B.; Cominetti, R.; Vaisman, J., A sharp uniform bound for the distribution of sums of Bernoulli trials, Comb. Probab. Comput., 25, 352-361 (2016) · Zbl 1372.60007
[4] Bambury, H.; Bultel, A.; Doerr, B., An extended jump function benchmark for the analysis of randomized search heuristics, (Proc. of GECCO ’21 (2021), ACM Press), 1124-1132
[5] Benbaki, R.; Benmar, Z.; Doerr, B., A rigorous runtime analysis of the 2-MMAS_ib on jump functions: ant colony optimizers can cope well with local optima, (Proc. of GECCO ’21 (2021), ACM Press), 4-13
[6] Corus, D.; Oliveto, P. S.; Yazdani, D., On the runtime analysis of the Opt-IA artificial immune system, (Proc. of GECCO ’17 (2017), ACM Press), 83-90
[7] Corus, D.; Oliveto, P. S.; Yazdani, D., Fast artificial immune systems, (Proc. of PPSN ’18 (2018), Springer), 67-78
[8] Dang, D.; Friedrich, T.; Kötzing, T.; Krejca, M. S.; Lehre, P. K.; Oliveto, P. S.; Sudholt, D.; Sutton, A. M., Escaping local optima using crossover with emergent diversity, IEEE Trans. Evol. Comput., 22, 484-497 (2018)
[9] Doerr, B., An exponential lower bound for the runtime of the compact genetic algorithm on jump functions, (Proc. of FOGA ’19 (2019), ACM Press), 25-33 · Zbl 1433.68643
[10] Doerr, B., A tight runtime analysis for the cGA on jump functions: EDAs can cross fitness valleys at no extra cost, (Proc. of GECCO ’19 (2019), ACM Press), 1488-1496
[11] Doerr, B., Probabilistic tools for the analysis of randomized optimization heuristics, (Doerr, B.; Neumann, F., Theory of Evolutionary Computation - Recent Developments in Discrete Optimization (2020), Springer), 1-87 · Zbl 1429.68004
[12] Doerr, B., The runtime of the compact genetic algorithm on jump functions, Algorithmica, 83, 3059-3107 (2021), Journal paper combining the above GECCO 19 and FOGA 19 papers by the same author · Zbl 1518.68437
[13] Doerr, B.; Le, H. P.; Makhmara, R.; Nguyen, T. D., Fast genetic algorithms, (Proc. of GECCO ’17 (2017), ACM Press), 777-784
[14] Doerr, B.; Zheng, W., Sharp bounds for genetic drift in estimation of distribution algorithms, IEEE Trans. Evol. Comput., 24, 1140-1149 (2020)
[15] Droste, S., A rigorous analysis of the compact genetic algorithm for linear functions, Nat. Comput., 5, 257-283 (2006) · Zbl 1113.68100
[16] Droste, S.; Jansen, T.; Wegener, I., On the analysis of the (1+1) evolutionary algorithm, Theor. Comput. Sci., 276, 51-81 (2002) · Zbl 1002.68037
[17] Droste, S.; Jansen, T.; Wegener, I., Upper and lower bounds for randomized search heuristics in black-box optimization, Theory Comput. Syst., 39, 525-544 (2006) · Zbl 1103.68115
[18] Fan, X.; Grama, I.; Liu, Q., Hoeffding’s inequality for supermartingales, Stoch. Process. Appl., 122, 3545-3559 (2012) · Zbl 1267.60045
[19] Friedrich, T.; Kötzing, T.; Krejca, M. S.; Nallaperuma, S.; Neumann, F.; Schirneck, M., Fast building block assembly by majority vote crossover, (Proc. of GECCO ’16 (2016), ACM Press), 661-668
[20] Friedrich, T.; Kötzing, T.; Krejca, M. S.; Sutton, A. M., The compact genetic algorithm is efficient under extreme Gaussian noise, IEEE Trans. Evol. Comput., 21, 477-490 (2017)
[21] Friedrich, T.; Quinzan, F.; Wagner, M., Escaping large deceptive basins of attraction with heavy-tailed mutation operators, (Proc. of GECCO ’18 (2018), ACM Press), 293-300
[22] Gleser, L. J., On the distribution of the number of successes in independent trials, Ann. Probab., 3, 182-188 (1975) · Zbl 0301.60010
[23] Harik, G. R.; Lobo, F. G.; Goldberg, D. E., The compact genetic algorithm, IEEE Trans. Evol. Comput., 3, 287-297 (1999)
[24] Hoeffding, W., On the distribution of the number of successes in independent trials, Ann. Math. Stat., 27, 713-721 (1956) · Zbl 0073.13902
[25] Hwang, H.; Witt, C., Sharp bounds on the runtime of the (1+1) EA via drift analysis and analytic combinatorial tools, (Proc. of FOGA ’19 (2019), ACM Press), 1-12 · Zbl 1433.68645
[26] Jansen, T., On the black-box complexity of example functions: the real jump function, (Proc. of FOGA ’15 (2015), ACM Press), 16-24 · Zbl 1361.68200
[27] Jansen, T.; Wegener, I., The analysis of evolutionary algorithms - a proof that crossover really can help, Algorithmica, 34, 47-66 (2002) · Zbl 1016.68030
[28] Johannsen, D., Random combinatorial structures and randomized search heuristics (2010), Saarland University, Ph.D. thesis
[29] Kötzing, T.; Sudholt, D.; Theile, M., How crossover helps in Pseudo-Boolean optimization, (Proc. of GECCO 2011 (2011), ACM Press), 989-996
[30] Lehre, P. K.; Witt, C., Tail bounds on hitting times of randomized search heuristics using variable drift analysis, Comb. Probab. Comput., 30, 550-569 (2021) · Zbl 1512.68443
[31] Lengler, J., Drift analysis, (Doerr, B.; Neumann, F., Theory of Evolutionary Computation - Recent Developments in Discrete Optimization (2020), Springer), 89-131 · Zbl 1429.68004
[32] Lengler, J.; Sudholt, D.; Witt, C., The complex parameter landscape of the compact genetic algorithm, Algorithmica, 83, 1096-1137 (2021) · Zbl 1512.68480
[33] Lissovoi, A.; Oliveto, P. S.; Warwicker, J. A., On the time complexity of algorithm selection hyper-heuristics for multimodal optimisation, (Proc. of AAAI ’19 (2019), AAAI Press), 2322-2329
[34] Marshall, A. W.; Olkin, I.; Arnold, B. C., Inequalities: Theory of Majorization and Its Applications (2011), Springer · Zbl 1219.26003
[35] Mitavskiy, B.; Rowe, J. E.; Cannings, C., Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links, Int. J. Intell. Comput. Cybern., 2, 243-284 (2009) · Zbl 1175.90210
[36] Oliveto, P. S.; Witt, C., Improved time complexity analysis of the simple genetic algorithm, Theor. Comput. Sci., 605, 21-41 (2015) · Zbl 1330.68120
[37] Prügel-Bennett, A., Benefits of a population: five mechanisms that advantage population-based algorithms, IEEE Trans. Evol. Comput., 14, 500-517 (2010)
[38] Rajabi, A.; Witt, C., Self-adjusting evolutionary algorithms for multimodal optimization, (Proc. of GECCO ’20 (2020), ACM Press), 1314-1322
[39] Rajabi, A.; Witt, C., Stagnation detection in highly multimodal fitness landscapes, (Proc. of GECCO ’21 (2021), ACM Press), 1178-1186
[40] Rajabi, A.; Witt, C., Stagnation detection with randomized local search, (Proc. of EvoCOP ’21 (2021), Springer), 152-168 · Zbl 1474.68477
[41] Rowe, J. E.; Aishwaryaprajna, The benefits and limitations of voting mechanisms in evolutionary optimisation, (Proc. of FOGA ’19 (2019), ACM Press), 34-42 · Zbl 1433.68651
[42] Sudholt, D., How crossover speeds up building block assembly in genetic algorithms, Evol. Comput., 25, 237-274 (2017)
[43] Sudholt, D.; Witt, C., On the choice of the update strength in estimation-of-distribution algorithms and ant colony optimization, Algorithmica, 81, 1450-1489 (2019) · Zbl 1421.68155
[44] Whitley, D.; Varadarajan, S.; Hirsch, R.; Mukhopadhyay, A., Exploration and exploitation without mutation: solving the jump function in \(\theta(n)\) time, (Proc. of PPSN ’18 (2018), Springer), 55-66
[45] Witt, C., Domino convergence: why one should hill-climb on linear functions, (Proc. of GECCO ’18 (2018), ACM Press), 1539-1546
[46] Witt, C., Upper bounds on the running time of the univariate marginal distribution algorithm on OneMax, Algorithmica, 81, 632-667 (2019) · Zbl 1414.68107
[47] Witt, C., On crossing fitness valleys with majority-vote crossover and estimation-of-distribution algorithms, (Proc. of FOGA ’21 (2021), ACM Press), 1-15 · Zbl 07526445
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.