×

Quantitative inconsistent feasibility for averaged mappings. (English) Zbl 07539465

Summary: Bauschke and Moursi have recently obtained results that implicitly contain the fact that the composition of finitely many averaged mappings on a Hilbert space that have approximate fixed points also has approximate fixed points and thus is asymptotically regular. Using techniques of proof mining, we analyze their arguments to obtain effective uniform rates of asymptotic regularity.

MSC:

47-XX Operator theory

References:

[1] Bauschke, H., The composition of projections onto closed convex sets in Hilbert space is asymptotically regular, Proc. Am. Math. Soc., 131, 1, 141-146 (2003) · Zbl 1016.47038 · doi:10.1090/S0002-9939-02-06528-0
[2] Bauschke, H.; Borwein, J.; Lewis, A.; Censor, Y.; Reich, S., The method of cyclic projections for closed convex sets in Hilbert space, Recent Developments in Optimization Theory and Nonlinear Analysis (Jerusalem, 1995), Contemporary Mathematics 204, 1-38 (1997), Providence: American Mathematical Society, Providence · Zbl 0874.47029
[3] Bauschke, H.; Combettes, P., Convex Analysis and Monotone Operator Theory in Hilbert Spaces (2017), Berlin: Springer, Berlin · Zbl 1359.26003 · doi:10.1007/978-3-319-48311-5
[4] Bauschke, H.; Martín-Márquez, V.; Moffat, S.; Wang, X., Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular, Fixed Point Theory Appl., 2012, 53 (2012) · Zbl 1300.47056 · doi:10.1186/1687-1812-2012-53
[5] Bauschke, H.; Moursi, W., The magnitude of the minimal displacement vector for compositions and convex combinations of firmly nonexpansive mappings, Optim. Lett., 12, 7, 1465-1474 (2018) · Zbl 1407.90341 · doi:10.1007/s11590-018-1259-5
[6] Bauschke, H.; Moursi, W., On the minimal displacement vector of compositions and convex combinations of nonexpansive mappings, Found. Comput. Math., 20, 1653-1666 (2020) · Zbl 07290668 · doi:10.1007/s10208-020-09449-w
[7] Bregman, LM, The method of successive projection for finding a common point of convex sets, Soviet Math. Dokl., 6, 688-692 (1965) · Zbl 0142.16804
[8] Brézis, H., Haraux, A.: Image d’une somme d’opérateurs monotones et applications. Isr. J. Math. 23(2), 165-186 (1976) · Zbl 0323.47041
[9] Browder, FE; Petryshyn, WV, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Am. Math. Soc., 72, 571-575 (1966) · Zbl 0138.08202 · doi:10.1090/S0002-9904-1966-11544-6
[10] Bruck, RE; Reich, S., Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houst. J. Math., 3, 4, 459-470 (1977) · Zbl 0383.47035
[11] Combettes, P., Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, 53, 5-6, 475-504 (2004) · Zbl 1153.47305 · doi:10.1080/02331930412331327157
[12] Giselsson, P., Tight global linear convergence rate bounds for Douglas-Rachford splitting, J. Fixed Point Theory Appl., 19, 4, 2241-2270 (2017) · Zbl 1380.65104 · doi:10.1007/s11784-017-0417-1
[13] Kohlenbach, U., Applied Proof Theory: Proof Interpretations and Their Use in Mathematics. Springer Monographs in Mathematics (2008), Berlin: Springer, Berlin · Zbl 1158.03002
[14] Kohlenbach, U., On the quantitative asymptotic behavior of strongly nonexpansive mappings in Banach and geodesic spaces, Isr. J. Math., 216, 1, 215-246 (2016) · Zbl 1358.47038 · doi:10.1007/s11856-016-1408-4
[15] Kohlenbach, U., A polynomial rate of asymptotic regularity for compositions of projections in Hilbert space, Found. Comput. Math., 19, 1, 83-99 (2019) · Zbl 07027311 · doi:10.1007/s10208-018-9377-0
[16] Kohlenbach, U.; Sirakov, B.; Ney de Souza, P.; Viana, M., Proof-theoretic methods in nonlinear analysis, Proceedings of the International Congress of Mathematicians 2018 (ICM 2018), 61-82 (2019), Singapore: World Scientific, Singapore · Zbl 1445.03062 · doi:10.1142/9789813272880_0045
[17] Moursi, W.; Vandenberghe, L., Douglas-Rachford splitting for the sum of a Lipschitz continuous and a strongly monotone operator, J. Optim. Theory Appl., 183, 1, 179-198 (2019) · Zbl 07112082 · doi:10.1007/s10957-019-01517-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.