×

Two-stage mean-risk stochastic optimization model for port cold storage capacity under pelagic fishery yield uncertainty. (English) Zbl 07527042

Summary: The problem of the optimal capacity of cold storage for pelagic fisheries under uncertain harvesting/production is studied. We establish a two-stage mean-risk stochastic optimization model, by considering the uncertainty of pelagic fishery yield and the risk measure of the cold storage cost loss. Applying a Benders-type scenario decomposition method, a modified cutting decomposition algorithm is proposed to solve the two-stage mean-risk stochastic optimization model, yielding the optimal capacity and maximal expected return of cold storage simultaneously. Further, the effects of the refrigeration cost, storage fee, weight of the conditional value-at-risk, and the confidence level on the expected profit are analyzed. We compare the modified cutting decomposition algorithm with a multi-cutting decomposition algorithm, to validate the proposed algorithm based on the computational time and the number of iterations.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Adeinat, H.; Ventura, J. A., Integrated pricing and supplier selection in a two-stage supply chain, Int. J. Prod. Econ., 201, 193-202 (2018)
[2] Brochier, Timothée; Auger, P. A.; Pecquerie, L., Complex small pelagic fish population patterns arising, from individual behavioral responses to their environment, Prog. Oceanogr. (2018), S0079661117303737
[3] Gagalyuk, T.; Hanf, J.; Herzlieb, C., Managing supply chains successfully: an empirical testing of success of supply chain networks in the german fish sector, Acta Agric. Scand., 7, 2-4, 139-150 (2010)
[4] Kristina, B.; Miller, N. A.; Boris, W., Global hot spots of transshipment of fish catch at sea, Sci. Adv., 4, 7 (2018), eaat7159-
[5] Lim, C. L.; Hobday, A. J.; Bustamante, R. H., Facing the wave of change: stakeholder perspectives on climate adaptation for Australian seafood supply chains, Reg. Environ. Change, 15, 4, 595-606 (2015)
[6] Ma, Q.; Wang, W.; Yun, P., A two-stage stochastic optimization model for port cold storage capacity allocation considering pelagic fishery yield uncertainties, Eng. Optim., 8, 1-15 (2018)
[7] Mai, N. T.; Margeirsson, B.; Margeirsson, S., Temperature mapping of fresh fish supply chains-air and sea transport, J. Food Process Eng., 35, 4, 622-656 (2012)
[8] Miller, T. H.; Gallidabino, M. D.; MacRae, J. R.; Owen, S. F.; Bury, N. R.; Barron, L. P., Prediction of bioconcentration factors in fish and invertebrates using machine learning, Sci. Total Environ., 648, 80-89 (2019)
[9] Mullon, C.; Guillotreau, P.; Galbraith, E. D., Exploring future scenarios for the global supply chain of tuna, Deep-Sea Res. II, 140, 251-267 (2017)
[10] Pälsson, J., Supply chain management in the fishing industry: the case of Iceland, Int. J. Logist. Res. Appl., 6, 3, 137-149 (2003)
[11] Trevor, C. C.; Aaron, M.; John, R., Estimation of multi-output production functions in commercial fisheries, Omega, 42, 1, 157-165 (2014)
[12] Wang, X.; Kjetil, F.; Stein, W. W., Planning for charters: a stochastic maritime fleet composition and deployment problem, Omega, 79, 54-66 (2018)
[13] West, C. D.; Hobbs, E.; Croft, S. A.; Green, J. M.H.; Schmidt, S. Y.; Wood, R., Improving consumption based accounting for global capture fisheries, J. Cleaner Prod., 212, 1396-1408 (2019)
[14] Yan, M. A.; Jing, X.; Ran, Z., Effect of temperature on microbiological and quality properties of puffer fish during cold storage, Food Sci., 33, 6, 288-292 (2012)
[15] Morkore, T.; Lilleholt, R., Impact of freezing temperature on quality of farmed atlantic cod (Gadus Moehua L), J. Texture Stud., 38, 4, 457-472 (2007)
[16] Xu, H. W.; Xie, J., Recent progress in preservation methods and freshness evaluation indexes for Tuna, Food Sci., 35, 7, 258-263 (2014)
[17] Putten, I. E.; Farmery, A. K.; Green, B. S., The environmental impact of two Australian rock lobster Fishery supply chains under a changing climate, J. Ind. Ecol., 20, 6, 1384-1398 (2016)
[18] Basak, S.; Shapiro, A., Value-at-risk-based risk management: Optimal policies and asset prices, Rev. Financ. Stud., 14, 2, 371-405 (2001)
[19] Australia, S., Risk management: principles and guidelines, Qual. Eng., 25, 4, 451-454 (2009)
[20] Meng, F. W.; Sun, J.; Goh, M., Stochastic optimization problems with CVaR risk measure and their sample average approximation, J. Optim. Theory Appl., 146, 2, 399-418 (2010) · Zbl 1213.91161
[21] Froot, K. A.; Scharfstein, D. S.; Stein, J. C., Risk management: Coordinating corporate investment and financing policies, J. Finance, 48, 5, 1629-1658 (2012)
[22] Sun, H.; Xu, H.; Wang, Y., Asymptotic analysis of sample average approximation for stochastic optimization problems with joint chance constraints via conditional value at risk and difference of convex functions, J. Optim. Theory Appl., 161, 1, 257-284 (2014) · Zbl 1314.90059
[23] Liang, T.; Ke, J.; Jie, H.; EugeneStanley, H., Robustness of assembly supply chain networks by considering risk propagation and cascading failure, Physica A, 459, 129-139 (2016) · Zbl 1400.90040
[24] Long, L. X.; Da, Y. Z.; Cang, B. L., Risk management research of the cost control of cold storage in construction stage, North. Econ. Trade (2013)
[25] Shapiro, A.; Dentcheva, D.; Ruszczynski, A., Lectures on Stochastic Programming: Modeling and Theory (2009), SIAM: SIAM Philadelphia · Zbl 1183.90005
[26] Birge, J. R.; Louveaux, F., Introduction to Stochastic Programming (2011), Springer · Zbl 1223.90001
[27] Li, B.; Xun, Q.; Sun, J.; Teo, K. L.; Yu, C. J., A model of distributionally robust two-stage stochastic convex programming with linear recourse, Appl. Math. Model., 58, 86-97 (2018) · Zbl 1480.90180
[28] Li, B.; Sun, J.; Teo, K. L.; Yu, C. J.; Zhang, M., A distributionally robust approach to a class of three-stage stochastic linear programs, Pac. J. Optim., 15, 2, 219-236 (2019) · Zbl 1454.90038
[29] Li, B.; Sun, J.; Xu, H. L.; Zhang, M., A class of two-stage distributionally robust stochastic games, J. Ind. Manag. Optim., 15, 1, 387-400 (2019) · Zbl 1415.91016
[30] R. P., Huang; Qu, S. J.; Yang, X. G.; Liu, Z. M., Multi-stage distributionally robust optimization with risk aversion, J. Ind. Manag. Optim. (2019)
[31] Noyan, N., Risk-averse stochastic modeling and optimization, INFORMS Tutor. Oper. Res., 22, 1-254 (2018)
[32] Artzner, P.; Delbaen, F.; Eber, J. M.; Heath, D., Coherent measures of risk, Math. Finance, 9, 3, 203-228 (1999) · Zbl 0980.91042
[33] Ogryczak, W.; Ruszczyänski, A., Dual stochastic dominance and related mean-risk models, SIAM J. Optim., 13, 2, 60-78 (2002) · Zbl 1022.91017
[34] Rockafellar, R. T., Coherent approaches to risk in optimization under uncertainty, Tutor. Oper. Res., 32, 1, 38-61 (2007)
[35] Noyan, N.; Rudolf, G., Optimization with multivariate conditional value-at-risk-constraints, Oper. Res., 61, 4, 990-1013 (2013) · Zbl 1291.91124
[36] Rockafellar, R. T.; Uryasev, S., Optimization of conditional value-at-risk, J. Risk, 2, 3, 21-41 (2000)
[37] Qu, S. J.; Zhou, Y. Y.; Zhang, Y. L.; Wahab, M. I.M.; Zhang, G.; Ye, Y. Y., Optimal strategy for a green supply chain considering shipping policy and default risk, Comput. Ind. Eng., 131, 172-186 (2019)
[38] Ruszczynski, A.; Shapiro, A., Decomposition methods, (HandBooks in Operations Research and Management Science, Vol. 10 (2003)), 141-211 · Zbl 1115.90001
[39] Ruszczynski, A.; Shapiro, A., Optimality and duality in stochastic programming, (HandBooks in Operations Research and Management Science, Vol. 10 (2003)), 65-139 · Zbl 1115.90001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.