×

Search optimization, funnel topography, and dynamical criticality on the string landscape. (English) Zbl 07500918

Summary: A striking feature of our universe is its near criticality. The cosmological constant and weak hierarchy problems, as well as the metastability of the electroweak vacuum, can all be understood as problems of criticality. This suggests a statistical physics approach, based on the landscape of string theory. In this paper we present a dynamical selection mechanism for hospitable vacua based on search optimization. Instead of focusing on late-time, stationary probability distributions for the different vacua, we are interested in the approach to equilibrium. This is particularly relevant if cosmological evolution on the multiverse has occurred for a finite time much shorter than the exponentially-long mixing time for the landscape. We argue this imposes a strong selection pressure among hospitable vacua, favoring those that lie in regions where the search algorithm is efficient. Specifically, we show that the mean first passage time is minimized for hospitable vacua lying at the bottom of funnel-like regions, akin to the smooth folding funnels of naturally-occurring proteins and the convex loss functions of well-trained deep neural networks. The optimality criterion is time-reparametrization invariant and defined by two competing requirements: search efficiency, which requires minimizing the mean first passage time, and sweeping exploration, which requires that random walks are recurrent. Optimal landscape regions reach a compromise by lying at the critical boundary between recurrence and transience, thereby achieving dynamical criticality. Remarkably, this implies that the optimal lifetime of vacua coincides with the de Sitter Page time, \( \tau_{crit} \sim M_{Pl}^2/H^3\). Our mechanism makes concrete phenomenological predictions: 1. The expected lifetime of our universe is \(10^{130}\) years, which is \(\gtrsim 2\sigma\) from the Standard Model metastability estimate; 2. The supersymmetry breaking scale should be high, \( \gtrsim 10^{10}\) GeV. The present framework suggests a correspondence between the near-criticality of our universe and non-equilibrium critical phenomena on the landscape.

MSC:

83E30 String and superstring theories in gravitational theory
83F05 Relativistic cosmology

References:

[1] S. Weinberg, 1989 The Cosmological Constant Problem, https://doi.org/10.1103/RevModPhys.61.1 Rev. Mod. Phys.61 1 · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[2] G.F. Giudice, 2019 The Dawn of the Post-Naturalness Era, in From My Vast Repertoire &ldots;: Guido Altarelli’s Legacy, A. Levy, S. Forte and G. Ridolfi, eds., pp. 267-292 [1710.07663], · doi:10.1142/9789813238053_0013
[3] P.H. Frampton, 1976 Vacuum Instability and Higgs Scalar Mass, https://doi.org/10.1103/PhysRevLett.37.1378 Phys. Rev. Lett.37 1378 [Erratum ibid 37 (1976) 1716] · doi:10.1103/PhysRevLett.37.1378
[4] M. Sher, 1989 Electroweak Higgs Potentials and Vacuum Stability, https://doi.org/10.1016/0370-1573(89)90061-6 Phys. Rept.179 273 · doi:10.1016/0370-1573(89)90061-6
[5] J.A. Casas, J.R. Espinosa and M. Quirós, 1995 Improved Higgs mass stability bound in the standard model and implications for supersymmetry, https://doi.org/10.1016/0370-2693(94)01404-Z Phys. Lett. B 342 171 [hep-ph/9409458] · doi:10.1016/0370-2693(94)01404-Z
[6] J.R. Espinosa and M. Quirós, 1995 Improved metastability bounds on the standard model Higgs mass, https://doi.org/10.1016/0370-2693(95)00572-3 Phys. Lett. B 353 257 [hep-ph/9504241] · doi:10.1016/0370-2693(95)00572-3
[7] G. Isidori, G. Ridolfi and A. Strumia, 2001 On the metastability of the standard model vacuum, https://doi.org/10.1016/S0550-3213(01)00302-9 Nucl. Phys. B 609 387 [hep-ph/0104016] · Zbl 0971.81580 · doi:10.1016/S0550-3213(01)00302-9
[8] J.R. Espinosa, G.F. Giudice and A. Riotto, 2008 Cosmological implications of the Higgs mass measurement J. Cosmol. Astropart. Phys.2008 05 002 [0710.2484]
[9] J. Ellis, J.R. Espinosa, G.F. Giudice, A. Hoecker and A. Riotto, 2009 The Probable Fate of the Standard Model, https://doi.org/10.1016/j.physletb.2009.07.054 Phys. Lett. B 679 369 [0906.0954] · doi:10.1016/j.physletb.2009.07.054
[10] G. Degrassi et al., 2012 Higgs mass and vacuum stability in the Standard Model at NNLO J. High Energy Phys. JHEP08(2012)098 [1205.6497]
[11] D. Buttazzo et al., 2013 Investigating the near-criticality of the Higgs boson J. High Energy Phys. JHEP12(2013)089 [1307.3536]
[12] Z. Lalak, M. Lewicki and P. Olszewski, 2014 Higher-order scalar interactions and SM vacuum stability J. High Energy Phys. JHEP05(2014)119 [1402.3826]
[13] A. Andreassen, W. Frost and M.D. Schwartz, 2014 Consistent Use of the Standard Model Effective Potential, https://doi.org/10.1103/PhysRevLett.113.241801 Phys. Rev. Lett.113 241801 [1408.0292] · doi:10.1103/PhysRevLett.113.241801
[14] V. Branchina, E. Messina and M. Sher, 2015 Lifetime of the electroweak vacuum and sensitivity to Planck scale physics, https://doi.org/10.1103/PhysRevD.91.013003 Phys. Rev. D 91 013003 [1408.5302] · doi:10.1103/PhysRevD.91.013003
[15] A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner and O.L. Veretin, 2015 Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision, https://doi.org/10.1103/PhysRevLett.115.201802 Phys. Rev. Lett.115 201802 [1507.08833] · doi:10.1103/PhysRevLett.115.201802
[16] G. Iacobellis and I. Masina, 2016 Stationary configurations of the Standard Model Higgs potential: electroweak stability and rising inflection point, https://doi.org/10.1103/PhysRevD.94.073005 Phys. Rev. D 94 073005 [1604.06046] · doi:10.1103/PhysRevD.94.073005
[17] A. Andreassen, W. Frost and M.D. Schwartz, 2018 Scale Invariant Instantons and the Complete Lifetime of the Standard Model, https://doi.org/10.1103/PhysRevD.97.056006 Phys. Rev. D 97 056006 [1707.08124] · doi:10.1103/PhysRevD.97.056006
[18] G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, 2008 Gravitational corrections to standard model vacuum decay, https://doi.org/10.1103/PhysRevD.77.025034 Phys. Rev. D 77 025034 [0712.0242] · doi:10.1103/PhysRevD.77.025034
[19] A. Salvio, A. Strumia, N. Tetradis and A. Urbano, 2016 On gravitational and thermal corrections to vacuum decay J. High Energy Phys. JHEP09(2016)054 [1608.02555]
[20] S. Weinberg, 1987 Anthropic Bound on the Cosmological Constant, https://doi.org/10.1103/PhysRevLett.59.2607 Phys. Rev. Lett.59 2607 · doi:10.1103/PhysRevLett.59.2607
[21] V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, 1998 Viable range of the mass scale of the standard model, https://doi.org/10.1103/PhysRevD.57.5480 Phys. Rev. D 57 5480 [hep-ph/9707380] · doi:10.1103/PhysRevD.57.5480
[22] A. Kobakhidze and A. Spencer-Smith, 2013 Electroweak Vacuum (In)Stability in an Inflationary Universe, https://doi.org/10.1016/j.physletb.2013.04.013 Phys. Lett. B 722 130 [1301.2846] · Zbl 1311.81241 · doi:10.1016/j.physletb.2013.04.013
[23] K. Enqvist, T. Meriniemi and S. Nurmi, 2013 Generation of the Higgs Condensate and Its Decay after Inflation J. Cosmol. Astropart. Phys.2013 10 057 [1306.4511]
[24] M. Fairbairn and R. Hogan, 2014 Electroweak Vacuum Stability in light of BICEP2, https://doi.org/10.1103/PhysRevLett.112.201801 Phys. Rev. Lett.112 201801 [1403.6786] · doi:10.1103/PhysRevLett.112.201801
[25] K. Enqvist, T. Meriniemi and S. Nurmi, 2014 Higgs Dynamics during Inflation J. Cosmol. Astropart. Phys.2014 07 025 [1404.3699]
[26] M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, 2014 Spacetime curvature and the Higgs stability during inflation, https://doi.org/10.1103/PhysRevLett.113.211102 Phys. Rev. Lett.113 211102 [1407.3141] · doi:10.1103/PhysRevLett.113.211102
[27] K. Kamada, 2015 Inflationary cosmology and the standard model Higgs with a small Hubble induced mass, https://doi.org/10.1016/j.physletb.2015.01.024 Phys. Lett. B 742 126 [1409.5078] · doi:10.1016/j.physletb.2015.01.024
[28] A. Salvio, 2015 A Simple Motivated Completion of the Standard Model below the Planck Scale: Axions and Right-Handed Neutrinos, https://doi.org/10.1016/j.physletb.2015.03.015 Phys. Lett. B 743 428 [1501.03781] · doi:10.1016/j.physletb.2015.03.015
[29] A. Shkerin and S. Sibiryakov, 2015 On stability of electroweak vacuum during inflation, https://doi.org/10.1016/j.physletb.2015.05.012 Phys. Lett. B 746 257 [1503.02586] · Zbl 1343.83058 · doi:10.1016/j.physletb.2015.05.012
[30] J. Kearney, H. Yoo and K.M. Zurek, 2015 Is a Higgs Vacuum Instability Fatal for High-Scale Inflation?, https://doi.org/10.1103/PhysRevD.91.123537 Phys. Rev. D 91 123537 [1503.05193] · doi:10.1103/PhysRevD.91.123537
[31] J.R. Espinosa et al., 2015 The cosmological Higgstory of the vacuum instability J. High Energy Phys. JHEP09(2015)174 [1505.04825] · Zbl 1388.83910
[32] D.G. Figueroa, J. García-Bellido and F. Torrenti, 2015 Decay of the standard model Higgs field after inflation, https://doi.org/10.1103/PhysRevD.92.083511 Phys. Rev. D 92 083511 [1504.04600] · doi:10.1103/PhysRevD.92.083511
[33] M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, 2015 Spacetime curvature and Higgs stability after inflation, https://doi.org/10.1103/PhysRevLett.115.241301 Phys. Rev. Lett.115 241301 [1506.04065] · doi:10.1103/PhysRevLett.115.241301
[34] G. Ballesteros, J. Redondo, A. Ringwald and C. Tamarit, 2017 Standard Model-axion-seesaw-Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke J. Cosmol. Astropart. Phys.2017 08 001 [1610.01639]
[35] A. Joti et al., 2017 (Higgs) vacuum decay during inflation J. High Energy Phys. JHEP07(2017)058 [1706.00792] · Zbl 1380.83210
[36] J.R. Espinosa, D. Racco and A. Riotto, 2018 Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter, https://doi.org/10.1103/PhysRevLett.120.121301 Phys. Rev. Lett.120 121301 [1710.11196] · doi:10.1103/PhysRevLett.120.121301
[37] C. Han, S. Pi and M. Sasaki, 2019 Quintessence Saves Higgs Instability, https://doi.org/10.1016/j.physletb.2019.02.037 Phys. Lett. B 791 314 [1809.05507] · doi:10.1016/j.physletb.2019.02.037
[38] A. Salvio, 2019 Critical Higgs inflation in a Viable Motivated Model, https://doi.org/10.1103/PhysRevD.99.015037 Phys. Rev. D 99 015037 [1810.00792] · doi:10.1103/PhysRevD.99.015037
[39] A.H. Guth and E.J. Weinberg, 1983 Could the Universe Have Recovered from a Slow First Order Phase Transition?, https://doi.org/10.1016/0550-3213(83)90307-3 Nucl. Phys. B 212 321 · doi:10.1016/0550-3213(83)90307-3
[40] G.F. Giudice and R. Rattazzi, 2006 Living Dangerously with Low-Energy Supersymmetry, https://doi.org/10.1016/j.nuclphysb.2006.07.031 Nucl. Phys. B 757 19 [hep-ph/0606105] · Zbl 1116.81360 · doi:10.1016/j.nuclphysb.2006.07.031
[41] S. Samuel, 2001 The Standard model in its other phase, https://doi.org/10.1016/S0550-3213(00)00741-0 Nucl. Phys. B 597 70 [hep-ph/9910559] · doi:10.1016/S0550-3213(00)00741-0
[42] N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a TeV, [hep-th/0501082]
[43] H. Friedrich, 1986 On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, https://doi.org/10.1007/bf01205488 Commun. Math. Phys.107 587 · Zbl 0659.53056 · doi:10.1007/bf01205488
[44] P. Bizon and A. Rostworowski, 2011 On weakly turbulent instability of anti-de Sitter space, https://doi.org/10.1103/PhysRevLett.107.031102 Phys. Rev. Lett.107 031102 [1104.3702] · doi:10.1103/PhysRevLett.107.031102
[45] R. Bousso and J. Polchinski, 2000 Quantization of four form fluxes and dynamical neutralization of the cosmological constant J. High Energy Phys. JHEP06(2000)006 [hep-th/0004134] · Zbl 0990.83543
[46] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, 2003 de Sitter vacua in string theory, https://doi.org/10.1103/PhysRevD.68.046005 Phys. Rev. D 68 046005 [hep-th/0301240] · Zbl 1244.83036 · doi:10.1103/PhysRevD.68.046005
[47] L. Susskind, The Anthropic landscape of string theory, [hep-th/0302219] · Zbl 1188.83105
[48] M.R. Douglas, 2003 The Statistics of string/M theory vacua J. High Energy Phys. JHEP05(2003)046 [hep-th/0303194]
[49] A. Vilenkin, 1983 The Birth of Inflationary Universes, https://doi.org/10.1103/PhysRevD.27.2848 Phys. Rev. D 27 2848 · doi:10.1103/PhysRevD.27.2848
[50] A.D. Linde, 1986 Eternal chaotic inflation, https://doi.org/10.1142/S0217732386000129 Mod. Phys. Lett. A 1 81 · doi:10.1142/S0217732386000129
[51] A.D. Linde, 1986 Eternally Existing Selfreproducing Chaotic Inflationary Universe, https://doi.org/10.1016/0370-2693(86)90611-8 Phys. Lett. B 175 395 · doi:10.1016/0370-2693(86)90611-8
[52] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, [1806.08362]
[53] P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, 2018 On the Cosmological Implications of the String Swampland, https://doi.org/10.1016/j.physletb.2018.07.040 Phys. Lett. B 784 271 [1806.09718] · doi:10.1016/j.physletb.2018.07.040
[54] J.J. Heckman, C. Lawrie, L. Lin and G. Zoccarato, 2019 F-theory and Dark Energy, https://doi.org/10.1002/prop.201900057 Fortsch. Phys.67 1900057 [1811.01959] · Zbl 1537.83047 · doi:10.1002/prop.201900057
[55] B. Freivogel, 2011 Making predictions in the multiverse, https://doi.org/10.1088/0264-9381/28/20/204007 Class. Quant. Grav.28 204007 [1105.0244] · Zbl 1228.83127 · doi:10.1088/0264-9381/28/20/204007
[56] A.D. Linde and A. Mezhlumian, 1993 Stationary universe, https://doi.org/10.1016/0370-2693(93)90187-M Phys. Lett. B 307 25 [gr-qc/9304015] · doi:10.1016/0370-2693(93)90187-M
[57] A.D. Linde, D.A. Linde and A. Mezhlumian, 1994 From the Big Bang theory to the theory of a stationary universe, https://doi.org/10.1103/PhysRevD.49.1783 Phys. Rev. D 49 1783 [gr-qc/9306035] · doi:10.1103/PhysRevD.49.1783
[58] J. García-Bellido, A.D. Linde and D.A. Linde, 1994 Fluctuations of the gravitational constant in the inflationary Brans-Dicke cosmology, https://doi.org/10.1103/PhysRevD.50.730 Phys. Rev. D 50 730 [astro-ph/9312039] · doi:10.1103/PhysRevD.50.730
[59] A. Vilenkin, 1995 Predictions from quantum cosmology, https://doi.org/10.1103/PhysRevLett.74.846 Phys. Rev. Lett.74 846 [gr-qc/9406010] · doi:10.1103/PhysRevLett.74.846
[60] A. De Simone, A.H. Guth, M.P. Salem and A. Vilenkin, 2008 Predicting the cosmological constant with the scale-factor cutoff measure, https://doi.org/10.1103/PhysRevD.78.063520 Phys. Rev. D 78 063520 [0805.2173] · doi:10.1103/PhysRevD.78.063520
[61] J. Garriga and A. Vilenkin, 1998 Recycling universe, https://doi.org/10.1103/PhysRevD.57.2230 Phys. Rev. D 57 2230 [astro-ph/9707292] · doi:10.1103/PhysRevD.57.2230
[62] J. Garriga, D. Schwartz-Perlov, A. Vilenkin and S. Winitzki, 2006 Probabilities in the inflationary multiverse J. Cosmol. Astropart. Phys.2006 01 017 [hep-th/0509184] · Zbl 1236.83021
[63] V. Vanchurin and A. Vilenkin, 2006 Eternal observers and bubble abundances in the landscape, https://doi.org/10.1103/PhysRevD.74.043520 Phys. Rev. D 74 043520 [hep-th/0605015] · doi:10.1103/PhysRevD.74.043520
[64] R. Bousso, 2006 Holographic probabilities in eternal inflation, https://doi.org/10.1103/PhysRevLett.97.191302 Phys. Rev. Lett.97 191302 [hep-th/0605263] · doi:10.1103/PhysRevLett.97.191302
[65] R. Bousso, 2009 Complementarity in the Multiverse, https://doi.org/10.1103/PhysRevD.79.123524 Phys. Rev. D 79 123524 [0901.4806] · doi:10.1103/PhysRevD.79.123524
[66] R. Bousso, B. Freivogel, S. Leichenauer and V. Rosenhaus, 2011 A geometric solution to the coincidence problem and the size of the landscape as the origin of hierarchy, https://doi.org/10.1103/PhysRevLett.106.101301 Phys. Rev. Lett.106 101301 [1011.0714] · doi:10.1103/PhysRevLett.106.101301
[67] R. Bousso, B. Freivogel and I.-S. Yang, 2009 Properties of the scale factor measure, https://doi.org/10.1103/PhysRevD.79.063513 Phys. Rev. D 79 063513 [0808.3770] · doi:10.1103/PhysRevD.79.063513
[68] J. Garriga and A. Vilenkin, 2013 Watchers of the multiverse J. Cosmol. Astropart. Phys.2013 05 037 [1210.7540]
[69] Y. Nomura, 2011 Physical Theories, Eternal Inflation and Quantum Universe J. High Energy Phys. JHEP11(2011)063 [1104.2324] · Zbl 1306.83079
[70] P. Anderson, H.J. Jensen, L.P. Oliveira and P. Sibani, 2004 Evolution in complex systems Complexity10 49 [cond-mat/0406689]
[71] J.C. Mauro and M.M. Smedskjaer, 2014 Statistical mechanics of glass, https://doi.org/10.1016/j.jnoncrysol.2014.04.009 J. Noncryst. Solids396-39741 · doi:10.1016/j.jnoncrysol.2014.04.009
[72] F. Denef, 2011 TASI lectures on complex structures, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2010). String Theory and Its Applications: From meV to the Planck Scale, Boulder, Colorado, U.S.A., 1-25 June 2010, pp. 407-512 [1104.0254] · doi:10.1142/9789814350525_0007
[73] F. Denef and M.R. Douglas, 2007 Computational complexity of the landscape. I., https://doi.org/10.1016/j.aop.2006.07.013 Annals Phys.322 1096 [hep-th/0602072] · Zbl 1113.83007 · doi:10.1016/j.aop.2006.07.013
[74] J. Halverson and F. Ruehle, 2019 Computational Complexity of Vacua and Near-Vacua in Field and String Theory, https://doi.org/10.1103/PhysRevD.99.046015 Phys. Rev. D 99 046015 [1809.08279] · doi:10.1103/PhysRevD.99.046015
[75] F. Denef, M.R. Douglas, B. Greene and C. Zukowski, 2018 Computational complexity of the landscape II — Cosmological considerations, https://doi.org/10.1016/j.aop.2018.03.013 Annals Phys.392 93 [1706.06430] · Zbl 1390.83337 · doi:10.1016/j.aop.2018.03.013
[76] R. Bousso, B. Freivogel, S. Leichenauer and V. Rosenhaus, 2011 Eternal inflation predicts that time will end, https://doi.org/10.1103/PhysRevD.83.023525 Phys. Rev. D 83 023525 [1009.4698] · doi:10.1103/PhysRevD.83.023525
[77] N. Bao, R. Bousso, S. Jordan and B. Lackey, 2017 Fast optimization algorithms and the cosmological constant, https://doi.org/10.1103/PhysRevD.96.103512 Phys. Rev. D 96 103512 [1706.08503] · doi:10.1103/PhysRevD.96.103512
[78] S.R. Coleman, 1977 The Fate of the False Vacuum. 1. Semiclassical Theory, https://doi.org/10.1103/PhysRevD.15.2929 Phys. Rev. D 15 2929 [Erratum ibid D 16 (1977) 1248] · doi:10.1103/PhysRevD.15.2929
[79] C.G. Callan Jr. and S.R. Coleman, 1977 The Fate of the False Vacuum. 2. First Quantum Corrections, https://doi.org/10.1103/PhysRevD.16.1762 Phys. Rev. D 16 1762 · doi:10.1103/PhysRevD.16.1762
[80] S.R. Coleman and F. De Luccia, 1980 Gravitational Effects on and of Vacuum Decay, https://doi.org/10.1103/PhysRevD.21.3305 Phys. Rev. D 21 3305 · doi:10.1103/PhysRevD.21.3305
[81] J. Carifio, W.J. Cunningham, J. Halverson, D. Krioukov, C. Long and B.D. Nelson, 2018 Vacuum Selection from Cosmology on Networks of String Geometries, https://doi.org/10.1103/PhysRevLett.121.101602 Phys. Rev. Lett.121 101602 [1711.06685] · doi:10.1103/PhysRevLett.121.101602
[82] J.D. Noh and H. Rieger, 2004 Random Walks on Complex Networks, https://doi.org/10.1103/physrevlett.92.118701 Phys. Rev. Lett.92 118701 · doi:10.1103/physrevlett.92.118701
[83] A. Barrat, M. Barthélemy and A. Vespignani, 2012 Dynamical Processes on Complex Networks, Cambridge University Press · Zbl 1253.90001
[84] N. Masuda, M.A. Porter and R. Lambiotte, 2018 Random walks and diffusion on networks, https://doi.org/10.1016/j.physrep.2017.07.007 Phys. Rept.745 1 [1612.03281] · Zbl 1377.05180 · doi:10.1016/j.physrep.2017.07.007
[85] S. Redner, 2001 A Guide to First-Passage Processes, Cambridge University Press · Zbl 0980.60006
[86] C.P. Haynes and A.P. Roberts, 2008 Global first-passage times of fractal lattices, https://doi.org/10.1103/physreve.78.041111 Phys. Rev. E 78 041111 [0809.0563] · doi:10.1103/physreve.78.041111
[87] Y. Lin and Z. Zhang, 2014 Mean first-passage time for maximal-entropy random walks in complex networks, https://doi.org/10.1038/srep05365 Sci. Rep.4 5365 · doi:10.1038/srep05365
[88] V. Tejedor, O. Bénichou and R. Voituriez, 2009 Global mean first-passage times of random walks on complex networks, https://doi.org/10.1103/physreve.80.065104 Phys. Rev. E 80 065104(R) [0909.0657] · doi:10.1103/physreve.80.065104
[89] J.G. Kemeny and J.L. Snell, 1960 Finite Markov Chains, Van Nostrand Comp. Int., New York · Zbl 0089.13704
[90] D. Schwartz-Perlov and A. Vilenkin, 2006 Probabilities in the Bousso-Polchinski multiverse J. Cosmol. Astropart. Phys.2006 06 010 [hep-th/0601162] · Zbl 1236.83021
[91] K.D. Olum and D. Schwartz-Perlov, 2007 Anthropic prediction in a large toy landscape J. Cosmol. Astropart. Phys.2007 10 010 [0705.2562]
[92] K.-M. Lee and E.J. Weinberg, 1987 Decay of the True Vacuum in Curved Space-time, https://doi.org/10.1103/PhysRevD.36.1088 Phys. Rev. D 36 1088 · doi:10.1103/PhysRevD.36.1088
[93] S. Havlin and D. Ben-Avraham, 1987 Diffusion in disordered media Adv. Phys.36 695 · doi:10.1080/00018738700101072
[94] A. Samarakoon et al., 2016 Aging, memory, and nonhierarchical energy landscape of spin jam Proc Natl Acad. Sci.113 11806 [1707.03086] · doi:10.1073/pnas.1608057113
[95] J.D. Bryngelson, J.N. Onuchic, N.D. Socci and P.G. Wolynes, 1995 Funnels, Pathways and the Energy Landscape of Protein Folding: A Synthesis, https://doi.org/10.1002/prot.340210302 Proteins21 167 [https://arxiv.org/abs/chem-ph/9411008 chem-ph/9411008] · doi:10.1002/prot.340210302
[96] N. Gō, 1983 Theoretical Studies of Protein Folding, https://doi.org/10.1146/annurev.bb.12.060183.001151 Ann. Rev. Biophys. Bioeng.12 183 · doi:10.1146/annurev.bb.12.060183.001151
[97] R. Unger and J. Moult, 1993 Finding the Lowest Free-Energy Conformation of a Protein is an NP-hard Problem — Proof and Implications, https://doi.org/10.1016/s0092-8240(05)80169-7 Bull. Math. Bio.55 1183 · Zbl 0791.92011 · doi:10.1016/s0092-8240(05)80169-7
[98] C. Levinthal, 1969 How to Fold Graciously Mossbauer; Spectroscopy in Biological Systems: Proceedings of a meeting held at Allerton House, Monticello, Illinois, J.T.P. DeBrunner and E. Munck eds., University of Illinois Press, pp. 22-24
[99] A. Blum and R.L. Rivest, 1988 Training a 3-node neural network is NP-complete, in NIPS ’88 Proceedings of the 1st International Conference on Neural Information Processing Systems, p. 494
[100] H. Li, Z. Xu, G. Taylor, C. Studer and T. Goldstein, Visualizing the Loss Landscape of Neural Nets, [1712.09913]
[101] C.H. Martin and M.W. Mahoney, Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning, [1810.01075] · Zbl 07415108
[102] D. Sornette, 2006 Critical phenomena in natural sciences: chaos, fractals, selforganization and disorder: concepts and tools, Springer-Verlag, Berlin · Zbl 1094.82001
[103] G. Pólya, 1921 About a task of the probability calculation concerning the randomness in the road network Math Annals84 149
[104] D.N. Page, 1993 Information in black hole radiation, https://doi.org/10.1103/PhysRevLett.71.3743 Phys. Rev. Lett.71 3743 [hep-th/9306083] · Zbl 0972.83567 · doi:10.1103/PhysRevLett.71.3743
[105] U.H. Danielsson, D. Domert and M.E. Olsson, 2003 Miracles and complementarity in de Sitter space, https://doi.org/10.1103/PhysRevD.68.083508 Phys. Rev. D 68 083508 [hep-th/0210198] · doi:10.1103/PhysRevD.68.083508
[106] U.H. Danielsson and M.E. Olsson, 2004 On thermalization in de Sitter space J. High Energy Phys. JHEP03(2004)036 [hep-th/0309163]
[107] R.Z. Ferreira, M. Sandora and M.S. Sloth, 2017 Asymptotic Symmetries in de Sitter and Inflationary Spacetimes J. Cosmol. Astropart. Phys.2017 04 033 [1609.06318] · Zbl 1515.83343
[108] R.Z. Ferreira, M. Sandora and M.S. Sloth, 2018 Patient Observers and Non-perturbative Infrared Dynamics in Inflation J. Cosmol. Astropart. Phys.2018 02 055 [1703.10162] · Zbl 1527.83129
[109] P. Creminelli, S. Dubovsky, A. Nicolis, L. Senatore and M. Zaldarriaga, 2008 The Phase Transition to Slow-roll Eternal Inflation J. High Energy Phys. JHEP09(2008)036 [0802.1067] · Zbl 1245.83085
[110] N. Arkani-Hamed, S. Dubovsky, A. Nicolis, E. Trincherini and G. Villadoro, 2007 A Measure of de Sitter entropy and eternal inflation J. High Energy Phys. JHEP05(2007)055 [0704.1814]
[111] R. Monasson et al., 1999 Determining computational complexity from characteristic “phase transitions”, https://doi.org/10.1038/22055 Nature400 133 · Zbl 1369.68244 · doi:10.1038/22055
[112] T. Hogg, B.A. Huberman and C.P. Williams, 1996 Phase transitions and the search problem, https://doi.org/10.1016/0004-3702(95)00044-5 Artif. Intell.81 1 · Zbl 1508.68334 · doi:10.1016/0004-3702(95)00044-5
[113] P. Bak, C. Tang and K. Wiesenfeld, 1987 Self-organized criticality: An Explanation of 1/f noise, https://doi.org/10.1103/PhysRevLett.59.381 Phys. Rev. Lett.59 381 · doi:10.1103/PhysRevLett.59.381
[114] P. Bak, 1996 How Nature Works: The Science of Self-Organized Criticality, Springer-Verlag, New York · Zbl 0894.00007
[115] H.J. Jensen, 1998 Self-Organized Criticality, Cambridge University Press, Cambridge · Zbl 0945.70001
[116] A. Roli, M. Villani, A. Filisetti and R. Serra, 2018 Dynamical criticality: overview and open questions, https://doi.org/10.1007/s11424-017-6117-5 J. Syst. Sci. Complex.31 647 · Zbl 1401.93007 · doi:10.1007/s11424-017-6117-5
[117] S.A. Kauffman, 1993 The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, Oxford
[118] E. Berlekamp, J.H. Conway and R. Guy, 1982 Winning ways for your mathematical plays, Academic Press, New York, NY · Zbl 0485.00025
[119] S. Wolfram, 1984 Universality and complexity in cellular automata, https://doi.org/10.1016/0167-2789(84)90245-8 Physica D 10 1 · doi:10.1016/0167-2789(84)90245-8
[120] N.H. Packard, 1988 Adaptation toward the edge of chaos Dynamic Patterns in Complex Systems212 293
[121] C.G. Langton, 1990 Computation at the edge of chaos: Phase transitions and emergent computation, https://doi.org/10.1016/0167-2789(90)90064-v Physica D 42 12 · doi:10.1016/0167-2789(90)90064-v
[122] J.P. Crutchfield and K. Young, 1989 Inferring statistical complexity, https://doi.org/10.1103/physrevlett.63.105 Phys. Rev. Lett.63 105 · doi:10.1103/physrevlett.63.105
[123] J.P. Crutchfield and K. Young, 1990 Computation at the onset of chaos, In Complexity, Entropy, and the Physics of Information, W.H. Zurek ed., Addison-Wesley, pp. 223-269
[124] M. Mitchell, P. Hraber and J.P. Crutchfield, 1993 Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations Complex Syst.7 89 [https://arxiv.org/abs/adap-org/9303003 adap-org/9303003] · Zbl 0834.68086
[125] N. Bertschinger and T. Natschläger, 2004 Real-time computation at the edge of chaos in recurrent neural networks, https://doi.org/10.1162/089976604323057443 Neural Comput.16 1413 · Zbl 1102.68530 · doi:10.1162/089976604323057443
[126] J. Boedecker, O. Obst O, J.T. Lizier, N.M. Mayer and M. Asada, 2012 Information processing in echo state networks at the edge of chaos, https://doi.org/10.1007/s12064-011-0146-8 Theor. Biosci.131 205 · doi:10.1007/s12064-011-0146-8
[127] M. Lukoševičius and H. Jaeger Reservoir computing approaches to recurrent neural network training, https://doi.org/10.1016/j.cosrev.2009.03.005 Comput. Sci. Rev.3 2009 127 · Zbl 1302.68235 · doi:10.1016/j.cosrev.2009.03.005
[128] F. Matzner, 2017 Neuroevolution on the Edge of Chaos, in Proc. of the Genetic and Evolutionary Computation Conference, p. 465 [1706.01330]
[129] M. Usher, M. Stemmler and Z. Olami, 1995 Dynamic pattern formation leads to 1/f noise in neural populations, https://doi.org/10.1103/physrevlett.74.326 Phys. Rev. Lett.74 326 · doi:10.1103/physrevlett.74.326
[130] O. Kinouchi and M, Copelli, 2006 Optimal Dynamical Range of Excitable Networks at Criticality, https://doi.org/10.1038/nphys289 Nature Phys.2 348 [https://arxiv.org/abs/q-bio/0601037 q-bio/0601037] · doi:10.1038/nphys289
[131] J.M. Beggs and D. Plenz, 2003 Neuronal avalanches in neocortical circuits, https://doi.org/10.1523/jneurosci.23-35-11167.2003 J. Neurosci.23 11167 · doi:10.1523/jneurosci.23-35-11167.2003
[132] D.R. Chialvo, 2010 Emergent complex neural dynamics, https://doi.org/10.1038/nphys1803 Nature Phys.6 744 [1010.2530] · doi:10.1038/nphys1803
[133] T. Mora and W. Bialek, 2011 Are biological systems poised at criticality?, https://doi.org/10.1007/s10955-011-0229-4 J. Stat. Phys.144 268 [1012.2242] · Zbl 1226.82005 · doi:10.1007/s10955-011-0229-4
[134] M. Nykter et al., 2008 Gene expression dynamics in the macrophage exhibit criticality, https://doi.org/10.1073/pnas.0711525105 Proc. Natl Acad. Sci.105 1897 · doi:10.1073/pnas.0711525105
[135] C. Furusawa and K. Kaneko Adaptation to optimal cell growth through self-organized criticality, https://doi.org/10.1103/physrevlett.108.208103 Phys. Rev. Lett.108 2012 208103 · doi:10.1103/physrevlett.108.208103
[136] A. Cavagna et al., 2010 Scale-free correlations in starling flocks, https://doi.org/10.1073/pnas.1005766107 Proc. Natl Acad. Sci.107 11865 · doi:10.1073/pnas.1005766107
[137] W. Bialek et al., 2012 Statistical mechanics for natural flocks of birds, https://doi.org/10.1073/pnas.1118633109 Proc. Natl Acad. Sci.109 4786 [1107.0604] · doi:10.1073/pnas.1118633109
[138] G.H. Pyke, 1984 Optimal Foraging Theory: A Critical Review, https://doi.org/10.1146/annurev.ecolsys.15.1.523 Ann. Rev. Ecol. Syst.15 523 · doi:10.1146/annurev.ecolsys.15.1.523
[139] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, 2012 Higgs mass implications on the stability of the electroweak vacuum, https://doi.org/10.1016/j.physletb.2012.02.013 Phys. Lett. B 709 222 [1112.3022] · doi:10.1016/j.physletb.2012.02.013
[140] G.F. Giudice and A. Strumia, 2012 Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, https://doi.org/10.1016/j.nuclphysb.2012.01.001 Nucl. Phys. B 858 63 [1108.6077] · Zbl 1246.81088 · doi:10.1016/j.nuclphysb.2012.01.001
[141] L. Smolin, 1992 Did the Universe Evolve?, https://doi.org/10.1088/0264-9381/9/1/016 Class. Quant. Grav.9 173 · doi:10.1088/0264-9381/9/1/016
[142] L. Smolin, The Fate of black hole singularities and the parameters of the standard models of particle physics and cosmology, [gr-qc/9404011]
[143] L. Smolin, 1996 Cosmology as a problem in critical phenomena, https://doi.org/10.1007/BFb0103573 Lect. Notes Phys.461 184 [gr-qc/9505022] · doi:10.1007/BFb0103573
[144] L. Smolin, Using neutron stars and primordial black holes to test theories of quantum gravity, [astro-ph/9712189]
[145] A.R. Brown, A. Dahlen and A. Masoumi, 2014 Compactifying de Sitter space naturally selects a small cosmological constant, https://doi.org/10.1103/PhysRevD.90.124048 Phys. Rev. D 90 124048 [1311.2586] · doi:10.1103/PhysRevD.90.124048
[146] S. Weinberg, 2000 A Priori probability distribution of the cosmological constant, https://doi.org/10.1103/PhysRevD.61.103505 Phys. Rev. D 61 103505 [astro-ph/0002387] · doi:10.1103/PhysRevD.61.103505
[147] J. Garriga, A. Vilenkin and J. Zhang, 2013 Non-singular bounce transitions in the multiverse J. Cosmol. Astropart. Phys.2013 11 055 [1309.2847]
[148] M.P. Salem, 2013 Multiverse rate equation including bubble collisions, https://doi.org/10.1103/PhysRevD.87.063501 Phys. Rev. D 87 063501 [1210.7181] · doi:10.1103/PhysRevD.87.063501
[149] A.R. Brown and A. Dahlen, 2011 Populating the Whole Landscape, https://doi.org/10.1103/PhysRevLett.107.171301 Phys. Rev. Lett.107 171301 [1108.0119] · doi:10.1103/PhysRevLett.107.171301
[150] Z. Zhang, T. Shan and G. Chen, 2013 Random walks on weighted networks, https://doi.org/10.1103/physreve.87.012112 Phys. Rev. E 87 012112 [1212.5998] · doi:10.1103/physreve.87.012112
[151] J. Polchinski, 2006 The Cosmological Constant and the String Landscape, in The Quantum Structure of Space and Time: Proceedings of the 23rd Solvay Conference on Physics, Brussels, Belgium, 1-3 December 2005, pp. 216-236 [hep-th/0603249]
[152] T.M. Michelitsch et al., 2017 Recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices, https://doi.org/10.1088/1751-8121/aa9008 J. Phys. A 50 505004 [1707.05843] · Zbl 1394.82009 · doi:10.1088/1751-8121/aa9008
[153] E.W. Montroll, 1969 Random Walks on Lattices. III. Calculation of First-Passage Times with Application to Exciton Trapping on Photosynthetic Units, https://doi.org/10.1063/1.1664902 J. Math. Phys.10 753 · Zbl 1368.60049 · doi:10.1063/1.1664902
[154] B.A. Huberman and T. Hogg, 1987 Phase transitions in artificial intelligence systems, https://doi.org/10.1016/0004-3702(87)90033-6 Artif. Intell.33 155 · doi:10.1016/0004-3702(87)90033-6
[155] I.P. Gent and T. Walsh, 1994 The SAT Phase Transition Proceedings of the 11th European Conference on Artificial Intelligence, A. Cohn ed., John Wiley & Sons, Ltd.
[156] A.R. Brown and A. Dahlen, 2010 Small Steps and Giant Leaps in the Landscape, https://doi.org/10.1103/PhysRevD.82.083519 Phys. Rev. D 82 083519 [1004.3994] · doi:10.1103/PhysRevD.82.083519
[157] P. Burda, R. Gregory and I. Moss, 2016 The fate of the Higgs vacuum J. High Energy Phys. JHEP06(2016)025 [1601.02152] · Zbl 1388.83398
[158] J.F. Gunion, H.E. Haber and M. Sher, 1988 Charge/Color Breaking Minima and a-Parameter Bounds in Supersymmetric Models, https://doi.org/10.1016/0550-3213(88)90168-X Nucl. Phys. B 306 1 · doi:10.1016/0550-3213(88)90168-X
[159] J.A. Casas, A. Lleyda and C. Muñoz, 1996 Strong constraints on the parameter space of the MSSM from charge and color breaking minima, https://doi.org/10.1016/0550-3213(96)00194-0 Nucl. Phys. B 471 3 [hep-ph/9507294] · doi:10.1016/0550-3213(96)00194-0
[160] A. Kusenko, P. Langacker and G. Segre, 1996 Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, https://doi.org/10.1103/PhysRevD.54.5824 Phys. Rev. D 54 5824 [hep-ph/9602414] · doi:10.1103/PhysRevD.54.5824
[161] A. Strumia, 1996 Charge and color breaking minima and constraints on the MSSM parameters, https://doi.org/10.1016/S0550-3213(96)00554-8 Nucl. Phys. B 482 24 [hep-ph/9604417] · doi:10.1016/S0550-3213(96)00554-8
[162] S. Abel and T. Falk, 1998 Charge and color breaking in the constrained MSSM, https://doi.org/10.1016/S0370-2693(98)01401-4 Phys. Lett. B 444 427 [hep-ph/9810297] · doi:10.1016/S0370-2693(98)01401-4
[163] D. Chowdhury, R.M. Godbole, K.A. Mohan and S.K. Vempati, 2014 Charge and Color Breaking Constraints in MSSM after the Higgs Discovery at LHC J. High Energy Phys. JHEP02(2014)110 [Erratum ibid 03 (2018) 149] [1310.1932]
[164] M.P. Hertzberg, 2017 A Correlation Between the Higgs Mass and Dark Matter, https://doi.org/10.1155/2017/6295927 Adv. High Energy Phys.2017 6295927 [1210.3624] · doi:10.1155/2017/6295927
[165] A. Linde and V. Vanchurin, Towards a non-anthropic solution to the cosmological constant problem, [1011.0119]
[166] T. Banks, 2001 Cosmological breaking of supersymmetry?, https://doi.org/10.1142/S0217751X01003998 Int. J. Mod. Phys. A 16 910 [hep-th/0007146] · Zbl 0982.83040 · doi:10.1142/S0217751X01003998
[167] Y.-S. Piao, 2004 Can the universe experience many cycles with different vacua?, https://doi.org/10.1103/PhysRevD.70.101302 Phys. Rev. D 70 101302 [hep-th/0407258] · doi:10.1103/PhysRevD.70.101302
[168] Y.-S. Piao, 2009 Proliferation in Cycle, https://doi.org/10.1016/j.physletb.2009.05.009 Phys. Lett. B 677 1 [0901.2644] · doi:10.1016/j.physletb.2009.05.009
[169] M.C. Johnson and J.-L. Lehners, 2012 Cycles in the Multiverse, https://doi.org/10.1103/PhysRevD.85.103509 Phys. Rev. D 85 103509 [1112.3360] · doi:10.1103/PhysRevD.85.103509
[170] J.-L. Lehners, 2012 Eternal Inflation With Non-Inflationary Pocket Universes, https://doi.org/10.1103/PhysRevD.86.043518 Phys. Rev. D 86 043518 [1206.1081] · doi:10.1103/PhysRevD.86.043518
[171] G.M. Viswanathan et al., 1999 Optimizing the success of random searches, https://doi.org/10.1038/44831 Nature401 911 · doi:10.1038/44831
[172] M.A. Lomholt, K. Tal, R. Metzler and K. Joseph, 2008 Lévy strategies in intermittent search processes are advantageous, https://doi.org/10.1073/pnas.0803117105 Proc. Natl. Acad. Sci.105 11055 · doi:10.1073/pnas.0803117105
[173] O. Bénichou, C. Loverdo, M. Moreau and R. Voituriez, 2011 Intermittent search strategies, https://doi.org/10.1103/revmodphys.83.81 Rev. Mod. Phys.83 81 · doi:10.1103/revmodphys.83.81
[174] O. Bénichou, M. Coppey, M. Moreau, P.-H. Suet and R. Voituriez, 2005 Optimal search strategies for hidden targets, https://doi.org/10.1103/physrevlett.94.198101 Phys. Rev. Lett.94 198101 · doi:10.1103/physrevlett.94.198101
[175] F. Di Patti, D. Fanelli and F. Piazza, 2015 Optimal search strategies on complex multi-linked networks, https://doi.org/10.1038/srep09869 Sci. Rep.5 9869 [1408.1603] · doi:10.1038/srep09869
[176] W.J. O’Brien, B.I. Evans and H.I. Browman, 1989 Flexible search tactics and efficient foraging in saltatory searching animals, https://doi.org/10.1007/bf00789938 Oecologia80 100 · doi:10.1007/bf00789938
[177] G.M. Viswanathan et al., 1996 Lévy flight search patterns of wandering albatrosses, https://doi.org/10.1038/381413a0 Nature381 413 · doi:10.1038/381413a0
[178] D.W. Sims et al., 2008 Scaling laws of marine predator search behaviour, https://doi.org/10.1038/nature06518 Nature451 1098 · doi:10.1038/nature06518
[179] N.E. Humphries et al., 2010 Environmental context explains Lévy and Brownian movement patterns of marine predators, https://doi.org/10.1038/nature09116 Nature465 1066 · doi:10.1038/nature09116
[180] D.A. Raichlen et al., 2013 Evidence of Lévy walk foraging patterns in human hunter-gatherers, https://doi.org/10.1073/pnas.1318616111 Proc. Natl. Acad. Sci.111 728 · doi:10.1073/pnas.1318616111
[181] S. Brin and L. Page, 1998 The anatomy of a large-scale hypertextual Web search engine, https://doi.org/10.1016/S0169-7552(98)00110-X Comput. Networks ISDN Syst.30 107 · doi:10.1016/S0169-7552(98)00110-X
[182] D.F. Gleich, 2015 PageRank Beyond the Web, https://doi.org/10.1137/140976649 SIAM Rev.57 321 [1407.5107] · Zbl 1336.05122 · doi:10.1137/140976649
[183] T. Banks, M. Dine and E. Gorbatov, 2004 Is there a string theory landscape? J. High Energy Phys. JHEP08(2004)058 [hep-th/0309170]
[184] F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lüst and T. Weigand, 2006 One in a billion: MSSM-like D-brane statistics J. High Energy Phys. JHEP01(2006)004 [hep-th/0510170]
[185] M. Tegmark, 1997 On the dimensionality of space-time, https://doi.org/10.1088/0264-9381/14/4/002 Class. Quant. Grav.14 L69 [gr-qc/9702052] · Zbl 0879.53071 · doi:10.1088/0264-9381/14/4/002
[186] G. Grinstein, D.-H. Lee and S. Sachdev, 1990 Conservation laws, anisotropy, and “self-organized criticality” in noisy nonequilibrium systems, https://doi.org/10.1103/physrevlett.64.1927 Phys. Rev. Lett.64 1927 · doi:10.1103/physrevlett.64.1927
[187] G. Grinstein, 1991 Generic scale invariance in classical nonequilibrium systems (invited), https://doi.org/10.1063/1.348003 J. Appl. Phys.69 5441 · doi:10.1063/1.348003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.