×

Editorial: hydrodynamic instability driven flows. (English) Zbl 07477858

From the text: In this Special Issue,1 Hydrodynamic Instability Driven Flows, Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instabilities are the focus of the attention.

MSC:

00Bxx Conference proceedings and collections of articles

References:

[1] Strutt), Lord Rayleigh (John William, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Lord. Proc. London Math. Soc., 14, 170 (1883) · JFM 15.0848.02
[2] Taylor, G. I., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I, Proc. R. Soc. Lond. A, 201, 192 (1950) · Zbl 0038.12201
[3] Richtmyer, R. D., Taylor instability in shock acceleration of compressible fluids, Comm. Pure Appl. Math., 13, 297 (1960)
[4] Meshkov, E. E., Instability of the interface of two gases accelerated by a shock wave, Fluid Dyn., 4, 101 (1969)
[5] (WilliamThomson), Lord Kelvin, XLVI Hydrokinetic solutions and observations, Lond. Edinb. Dublin Philos. Mag. J. Sci., 42, 362 (1871)
[6] von Helmholtz, H., über discontinuirliche Flüssigkeits-Bewegungen, Akad. Wiss. Berl., 23, 215 (1868)
[7] Youngs, D. L., Time-dependent multi-material flow with large fluid distortion, (Morton, K. W.; Baines, M. J., Numerical Methods for Fluid Dynamics (1982), Academic Press: Academic Press London) · Zbl 0537.76071
[8] Youngs, D. L., Numerical simulation of turbulent mixing by Rayleigh- Taylor instability, Physica D, 12, 32 (1984)
[9] Youngs, D. L., Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Phys. Fluids A, 3, 1312 (1991)
[10] Youngs, D. L., Modelling turbulent mixing by Rayleigh-Taylor instability, Physica D, 37, 270 (1989)
[11] Youngs, D. L., The density ratio dependence of self-similar Rayleigh-Taylor mixing, Phil. Trans. R. Soc. A, 371 (2013), 20120173 · Zbl 1353.76031
[12] Youngs, D. L., Rayleigh-Taylor mixing: Direct numerical simulation and implicit large eddy simulation, Phys. Scr., 92, Article 074006 pp. (2017)
[13] Youngs, D. L., Numerical simulation of mixing by Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Laser Part. Beams, 12, 725 (1994)
[14] Sharp, D. H., Overview of Rayleigh-taylor instability, Physica D, 12, 3 (1984) · Zbl 0577.76047
[15] Read, K. I., Experimental investigation of turbulent mixing by Rayleigh-Taylor instability, Physica D, 12, 45 (1984)
[16] Aslangil, D.; Livescu, D.; Banerjee, A., Variable-density buoyancy-driven turbulence with asymmetric initial density distribution, Physica D, 406, Article 132444 pp. (2020)
[17] Attal, N.; Ramaprabhu, P., The stability of reacting single-mode Rayleigh-Taylor flames, Physica D, 404, Article 132353 pp. (2020)
[18] Bian, X.; Aluie, H.; Zhao, D.; Zhang, H.; Livescu, D., Revisiting the late-time growth of single-mode Rayleigh-Taylor instability and the role of vorticity, Physica D, 403, Article 132250 pp. (2020)
[19] Chang, C. H.; Douglass, R. W., Numerical simulations of onset and growth of Rayleigh-Taylor instability involving solids in converging geometry, Physica D, 411, Article 132607 pp. (2020)
[20] Dalziel, S.; Mouet, V., Rayleigh-Taylor instability between unequally stratified layers, Physica D, 423, Article 132907 pp. (2021) · Zbl 1485.76042
[21] Horne, J. T.; Lawrie, A. G.W., Aspect-ratio-constrained Rayleigh-Taylor instability, Physica D, 406, Article 132442 pp. (2020)
[22] Livescu, D.; Wei, T.; Brady, P. T., Rayleigh-Taylor instability with gravity reversal, Physica D, 417, Article 132832 pp. (2021) · Zbl 1485.76045
[23] McDaniel, A.; Mahalov, A., Coupling of paraxial and white-noise approximations of the Helmholtz equation in randomly layered media, Physica D, 409, Article 132491 pp. (2020) · Zbl 07507340
[24] Morgan, B. E.; Black, W. J., Parametric investigation of the transition to turbulence in Rayleigh-Taylor mixing, Physica D, 402, Article 132223 pp. (2020) · Zbl 1453.76059
[25] Narayanan, K.; Samtaney, R., On the role of thermal fluctuations in Rayleigh-Taylor mixing, Physica D, 402, Article 132241 pp. (2020)
[26] Groom, M.; Thornber, B., The influence of initial perturbation power spectra on the growth of a turbulent mixing layer induced by Richtmyer-Meshkov instability, Physica D, Article 132463 pp. (2020) · Zbl 1485.76043
[27] Margolin, L. G.; Plesko, C. S.; Reisner, J. M., A finite scale model for shock structure, Physica D, 403, Article 132308 pp. (2020) · Zbl 1524.76344
[28] Probyn, M. G.; Williams, R. J.R.; Thornber, B.; Drikakis, D.; Youngs, D. L., 2D single-mode Richtmyer-Meshkov instability, Physica D, 418, Article 132827 pp. (2021)
[29] Wadas, M. J.; Johnsen, E., Interactions of two bubbles along a gaseous interface undergoing the Richtmyer-Meshkov instability in two dimensions, Physica D, 409, Article 132489 pp. (2020)
[30] Kokkinakis, I. W.; Drikakis, D.; Youngs, D. L., Vortex morphology in Richtmyer-Meshkov-induced turbulent mixing, Physica D, 407, Article 132459 pp. (2020)
[31] Latini, M.; Schilling, O., A comparison of two-and three-dimensional single-mode reshocked Richtmyer-Meshkov instability growth, Physica D, 401, Article 132201 pp. (2020) · Zbl 1453.76133
[32] Mikaelian, K. O.; Olson, B. J., On modeling Richtmyer-Meshkov turbulent mixing widths, Physica D, 402, Article 132243 pp. (2020)
[33] Noble, C. D.; Herzog, J. M.; Ames, A. M.; Oakley, J.; Rothamer, D. A.; Bonazza, R., High speed PLIF study of the Richtmyer-Meshkov instability upon re-shock, Physica D, 410, Article 132519 pp. (2020) · Zbl 1486.76040
[34] Buttler, W. T.; Schulze, R. K.; Charonko, J. J.; Cooley, J. C.; Hammerberg, J. E.; Schwarzkopf, J. D.; Sheppard, D. G.; Goett III, J. J.; Grover, M.; La Lone, B. M.; Lamoreaux, S. K.; Manzanares, R.; Martinez, J. I.; Regele, J. D.; Schauer, M. M.; Schmidt, D. W.; Stevens, G. D.; Turley, W. D.; Valencia, R. J., Understanding the transport and break up of reactive ejecta, Physica D, 415, Article 132787 pp. (2021)
[35] Kurien, S.; Doss, F. W.; Livescu, D.; Flippo, K., Extracting a mixing parameter from 2D radiographic imaging of variable-density turbulent flow, Physica D, 405, Article 132354 pp. (2020) · Zbl 1504.76047
[36] Glimm, J.; Cheng, B.; Sharp, D. H.; Kaman, T., A crisis for the verification and validation of turbulence simulations, Physica D, 404, Article 132346 pp. (2020) · Zbl 1490.76117
[37] Grinstein, F. F., Coarse grained simulation of convectively driven turbulent mixing, transition, and turbulence decay, Physica D, 407, Article 132419 pp. (2020)
[38] Braun, N. O.; Gore, R. A., A passive model for the evolution of subgrid-scale instabilities in turbulent flow regimes, Physica D, 404, Article 132373 pp. (2020) · Zbl 1490.76101
[39] Cheng, B.; Glimm, J.; Sharp, D. H., The \(\alpha\) s and \(\beta\) s in Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Physica D, 404, Article 132356 pp. (2020) · Zbl 1490.76103
[40] Guo, W.; Zhang, Q., Universality and scaling laws among fingers at Rayleigh-Taylor and Richtmyer-Meshkov unstable interfaces in different dimensions, Physica D, 403, Article 132304 pp. (2020) · Zbl 1490.76104
[41] Lee, T. W., Lagrangian transport equations and an iterative solution method for turbulent jet flows, Physica D, 403, Article 132333 pp. (2020) · Zbl 1490.76114
[42] Schilling, O., A buoyancy-shear-drag-based turbulence model for Rayleigh-Taylor, reshocked Richtmyer-Meshkov, and Kelvin-Helmholtz mixing, Physica D, 402, Article 132238 pp. (2020) · Zbl 1453.76055
[43] Soulard, O.; Guillois, F.; Griffond, J.; Sabelnikov, V.; Simoëns, S., A two-scale Langevin PDF model for Richtmyer-Meshkov turbulence with a small Atwood number, Physica D, 403, Article 132276 pp. (2020) · Zbl 1490.76115
[44] Youngs, D. L.; Thornber, B., Buoyancy-drag modelling of bubble and spike distances for single-shock Richtmyer-Meshkov mixing, Physica D, 410, Article 132517 pp. (2020) · Zbl 1486.76094
[45] Zhou, Y., Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I, Phys. Rep., 720-722, 1 (2017) · Zbl 1377.76016
[46] Zhou, Y., Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II, Phys. Rep., 723-725, 1 (2017) · Zbl 1377.76017
[47] Zhou, Y.; Clark, T. T.; Clark, D. S.; Glendinning, S. G.; Skinner, M. A.; Huntington, C. M.; Hurricane, O. A.; Dimits, A. M.; Remington, B. A., Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities, Phys. Plasmas, 26, Article 080901 pp. (2019)
[48] Zhou, Y.; Williams, R. J.R.; Ramaprabhu, P.; Groom, M.; Thornber, B.; Hillier, A.; Mostert, W.; Rollin, B.; Balachandar, S.; Powell, P. D.; Attal, N., Rayleigh-Taylor and Richtmyer-Meshkov instabilities: A journey through scales, Physica D, 422, Article 132838 pp. (2021) · Zbl 1491.76030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.