×

Relevance domains and the philosophy of science. (English) Zbl 07452005

Arieli, Ofer (ed.) et al., Arnon Avron on semantics and proof theory of non-classical logics. Cham: Springer. Outst. Contrib. Log. 21, 223-247 (2021).
Summary: This paper uses Avron’s algebraic semantics for the logic RMI to model some ideas in the philosophy of science. Avron’s relevant disjunctive structures (RDS) are each partitioned into relevance domains. Each relevance domain is a boolean algebra. I employ this semantics to act as a formal framework to represent what Nancy Cartwright calls the “dappled world”. On the dappled world hypothesis, local scientific theories each represent restricted aspects and regions of the universe. I use relevance domains to represent the domains of each of these local theories and I provide a formalisation of the salient relationships between so-called fundamental theories and local theories. I also examine ways in which the paraconsistent nature of RMI can be used to deal with inconsistencies within and between theories adopted by scientists. The paper ends with some suggestions about updating RDS given changes in the theories that science adopts.
For the entire collection see [Zbl 1470.03007].

MSC:

03-XX Mathematical logic and foundations
68-XX Computer science
Full Text: DOI

References:

[1] Anderson, A., & Belnap, N. D. (1975). Entailment: Logic of Relevance and Necessity(Vol. I). Princeton: Princeton University Press. · Zbl 0323.02030
[2] Avron, A. (1990). Relevance and paraconsistency - a new approach. Journal of Symbolic Logic, 55, 707-732. · Zbl 0705.03007 · doi:10.2307/2274660
[3] Avron, A. (1990). Relevance and paraconsistency - a new approach, part II: The formal systems. Notre Dame Journal of Formal Logic, 31, 169-202. · Zbl 0714.03020 · doi:10.1305/ndjfl/1093635414
[4] Avron, A. (1991). Relevance and paraconsistency - a new approach, part III: Cut-free gentzen-type systems. Notre Dame Journal of Formal Logic, 32, 147-160. · Zbl 0726.03012
[5] Batens, D. (2017). Scientific problem solving: Why inconsistency is no big deal. Humana Mente, 10, 149-177.
[6] Boyer, C. B. (1959). The History of the Calculus and its Conceptual Development. New York: Dover. · Zbl 0095.00302
[7] Brown, B. (1992). The old quantum theory: A paraconsistent approach. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1992, 397-411.
[8] Brown, B., & Priest, G. (2004). Chunk and permeate: An inconsistent inference strategy. Part I: The infinitesimal calculus. Journal of Philosophical Logic, 33, 379-388. · Zbl 1067.03032 · doi:10.1023/B:LOGI.0000036831.48866.12
[9] Brown, B., & Priest, G. (2015). Chunk and permeate II: Bohr’s hydrogen atom. European Journal for the Philosophy of Science, 5, 297-314. · Zbl 1382.81018 · doi:10.1007/s13194-014-0104-7
[10] Brown, J. R. (1993). The Laboratory of the Mind: Thought Experiments in the Natural Sciences. London: Routledge.
[11] Carnielli, W., & Coniglio, M. E. (2015). Paraconsistent Logic: Consistency, Contradiction, and Negation. Dordrecht: Springer. · Zbl 1355.03001
[12] Cartwright, N. (1983). How the Laws of Physics Lie. Oxford: Oxford University Press. · doi:10.1093/0198247044.001.0001
[13] Cartwright, N. (1999). The Dappled World: A Study of the Boundaries of Science. Cambridge: Cambridge University Press. · Zbl 1003.00005 · doi:10.1017/CBO9781139167093
[14] Da Costa, N. C. A., & French, S. (2003). Science and Partial Truth: A Unitary Approach to Models and Scientific Reasoning. Oxford: Oxford University Press. · doi:10.1093/019515651X.001.0001
[15] Cresswell, M. J. (2012). Mathematical entities in the divided line. The Review of Metaphysics, 66, 89-104.
[16] Fine, K. (1974). Models for entailment. Journal of Philosophical Logic, 3, 347-372. · Zbl 0296.02013 · doi:10.1007/BF00257480
[17] Galilei, G. (1933). Dialogues Concerning Two New Sciences. New York: McGraw-Hill. · JFM 45.1216.05
[18] Kitcher, P. (1981). Explanatory unification. Philosophy of Science, 48, 507-531. · doi:10.1086/289019
[19] Mares, E., & Fuhrmann, A. (1995). A relevant theory of conditionals. Journal of Philosophical Logic, 24, 645-665. · Zbl 0853.03005 · doi:10.1007/BF01306969
[20] Norton, J. D. (1999). The cosmological woes of Newtonian gravitational theory. In H. Goenner, J. Renn, J. Ritter, & T. Sauer (Eds.), The Expanding Worlds of General Relativity(pp. 271-323). Basil: Birkhauser. · Zbl 0943.83504 · doi:10.1007/978-1-4612-0639-2_8
[21] Read, S. (1988). Relevant Logic: A Philosophical Interpretation of Inference. Oxford: Basil Blackwell.
[22] Russell, B. (1903). Principles of Mathematics. New York: W.W. Norton and Company. · JFM 34.0062.14
[23] van Fraassen, B. C. (1980). The Scientific Image. Oxford: Oxford University Press. · doi:10.1093/0198244274.001.0001
[24] Vickers, P. (2013). Understanding Inconsistent Science. Oxford: Oxford University Press · doi:10.1093/acprof:oso/9780199692026.001.0001
[25] van Fraassen, B. C. (1989). Laws and Symmetry. Oxford: Oxford University Press. · doi:10.1093/0198248601.001.0001
[26] Halmos, P. (1962). Algebraic Logic. New York: Chelsea. · Zbl 0101.01101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.