×

Classification of module categories for \(SO (3)_{2m} \). (English) Zbl 07415143

Summary: The main goal of this paper is to classify \(\ast \)-module categories for the \(S O ( 3 )_{2 m}\) modular tensor category. This is done by classifying \(S O ( 3 )_{2 m}\) nimrep graphs and cell systems, and in the process we also classify the \(S O(3)\) modular invariants. There are module categories of type \(\mathcal{A}\), \(\mathcal{E}\) and their conjugates, but there are no orbifold (or type \(\mathcal{D} )\) module categories. We present a construction of a subfactor with principal graph given by the fusion rules of the fundamental generator of the \(S O ( 3 )_{2 m}\) modular category. We also introduce a Frobenius algebra \(A\) which is an \(S O(3)\) generalisation of (higher) preprojective algebras, and derive a finite resolution of \(A\) as a left \(A\)-module along with its Hilbert series.

MSC:

81Txx Quantum field theory; related classical field theories
46Lxx Selfadjoint operator algebras (\(C^*\)-algebras, von Neumann (\(W^*\)-) algebras, etc.)
17Bxx Lie algebras and Lie superalgebras

References:

[1] Baver, E.; Gepner, D., Fusion rules for extended current algebras, Mod. Phys. Lett. A, 11, 1929-1946 (1996) · Zbl 1022.81727
[2] Birman, J. S.; Wenzl, H., Braids, link polynomials and a new algebra, Trans. Am. Math. Soc., 313, 249-273 (1989) · Zbl 0684.57004
[3] Böckenhauer, J.; Evans, D. E., Modular invariants, graphs and α-induction for nets of subfactors. II, Commun. Math. Phys., 200, 57-103 (1999) · Zbl 1151.46316
[4] Böckenhauer, J.; Evans, D. E., Modular invariants, graphs and α-induction for nets of subfactors. III, Commun. Math. Phys., 205, 183-228 (1999) · Zbl 0949.46030
[5] Böckenhauer, J.; Evans, D. E., Modular invariants from subfactors: type I coupling matrices and intermediate subfactors, Commun. Math. Phys., 213, 267-289 (2000) · Zbl 0987.46044
[6] Böckenhauer, J.; Evans, D. E., Modular invariants and subfactors, (Mathematical Physics in Mathematics and Physics. Mathematical Physics in Mathematics and Physics, Siena, 2000. Mathematical Physics in Mathematics and Physics. Mathematical Physics in Mathematics and Physics, Siena, 2000, Fields Inst. Commun., vol. 30 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 11-37 · Zbl 1030.46077
[7] Böckenhauer, J.; Evans, D. E., Modular invariants from subfactors, (Quantum Symmetries in Theoretical Physics and Mathematics. Quantum Symmetries in Theoretical Physics and Mathematics, Bariloche, 2000. Quantum Symmetries in Theoretical Physics and Mathematics. Quantum Symmetries in Theoretical Physics and Mathematics, Bariloche, 2000, Contemp. Math., vol. 294 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 95-131 · Zbl 1213.81138
[8] Böckenhauer, J.; Evans, D. E.; Kawahigashi, Y., On α-induction, chiral generators and modular invariants for subfactors, Commun. Math. Phys., 208, 429-487 (1999) · Zbl 0948.46048
[9] Böckenhauer, J.; Evans, D. E.; Kawahigashi, Y., Chiral structure of modular invariants for subfactors, Commun. Math. Phys., 210, 733-784 (2000) · Zbl 0988.46047
[10] Braun, V.; Schäfer-Nameki, S., Supersymmetric WZW models and twisted K-theory of \(S O(3)\), Adv. Theor. Math. Phys., 12, 217-242 (2008) · Zbl 1144.81498
[11] Cappelli, A.; Itzykson, C.; Zuber, J.-B., The A-D-E classification of minimal and \(A_1^{( 1 )}\) conformal invariant theories, Commun. Math. Phys., 113, 1-26 (1987) · Zbl 0639.17008
[12] Carey, A.; Wang, B., Fusion of symmetric D-branes and Verlinde rings, Commun. Math. Phys., 277, 577-625 (2008) · Zbl 1161.53069
[13] Cooper, B., Almost Koszul Duality and Rational Conformal Field Theory (2007), University of Bath, PhD thesis
[14] Di Francesco, P.; Zuber, J.-B., \( \operatorname{SU}(N)\) lattice integrable models associated with graphs, Nucl. Phys. B, 338, 602-646 (1990)
[15] Edie-Michell, C., The Brauer-Picard groups of the fusion categories coming from the ADE subfactors, Int. J. Math., 29, Article 1850036 pp. (2018) · Zbl 1400.46050
[16] Effros, E. G., Dimensions and \(C^\ast \)-Algebras, CBMS Regional Conference Series in Mathematics, vol. 46 (1981), Conference Board of the Mathematical Sciences: Conference Board of the Mathematical Sciences Washington, D.C.
[17] Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor Categories, Mathematical Surveys and Monographs, vol. 25 (2015), American Mathematical Society · Zbl 1365.18001
[18] Etingof, P.; Ostrik, V., Module categories over representations of \(\operatorname{SL}_q(2)\) and graphs, Math. Res. Lett., 11, 103-114 (2004) · Zbl 1053.17010
[19] Evans, D. E., Critical phenomena, modular invariants and operator algebras, (Operator Algebras and Mathematical Physics. Operator Algebras and Mathematical Physics, Constanţa, 2001 (2003), Theta: Theta Bucharest), 89-113 · Zbl 1284.46051
[20] Evans, D. E.; Kawahigashi, Y., Orbifold subfactors from Hecke algebras, Commun. Math. Phys., 165, 445-484 (1994) · Zbl 0805.46077
[21] Evans, D. E.; Kawahigashi, Y., Quantum Symmetries on Operator Algebras, Oxford Mathematical Monographs (1998), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York, Oxford Science Publications · Zbl 0924.46054
[22] Evans, D. E.; Pugh, M., Ocneanu cells and Boltzmann weights for the \(S U(3)\mathcal{ADE}\) graphs, Münster J. Math., 2, 95-142 (2009) · Zbl 1189.81192
[23] Evans, D. E.; Pugh, M., \(S U(3)\)-Goodman-de la Harpe-Jones subfactors and the realisation of \(S U(3)\) modular invariants, Rev. Math. Phys., 21, 877-928 (2009) · Zbl 1187.46049
[24] Evans, D. E.; Pugh, M., The Nakayama automorphism of the almost Calabi-Yau algebras associated to \(S U(3)\) modular invariants, Commun. Math. Phys., 312, 179-222 (2012) · Zbl 1267.81275
[25] Fendley, P.; Krushkal, V., Link invariants, the chromatic polynomial and the Potts model, Adv. Theor. Math. Phys., 14, 507-540 (2010) · Zbl 1207.82007
[26] Freed, D. S.; Hopkins, M. J.; Teleman, C., Twisted equivariant K-theory with complex coefficients, J. Topol., 1, 16-44 (2008) · Zbl 1188.19005
[27] Fuchs, J.; Runkel, I.; Schweigert, C., TFT construction of RCFT correlations I: partition functions, Nucl. Phys. B, 646, 353-497 (2002) · Zbl 0999.81079
[28] Fuchs, J.; Schellekens, A. N.; Schweigert, C., A matrix S for all simple current extensions, Nucl. Phys. B, 473, 323-366 (1996) · Zbl 0921.17014
[29] Gannon, T., The classification of affine \(\operatorname{SU}(3)\) modular invariant partition functions, Commun. Math. Phys., 161, 233-263 (1994) · Zbl 0806.17031
[30] Gel’fand, I. M.; Ponomarev, V. A., Model algebras and representations of graphs, Funkc. Anal. Prilozh., 13, 1-12 (1979) · Zbl 0437.16020
[31] Freedman, M. H., A magnetic model with a possible Chern-Simons phase, Commun. Math. Phys., 234, 129-183 (2003), F.M. Goodman, H. Wenzl, Ideals in the Temperley-Lieb category, Appendix to · Zbl 1060.81054
[32] Graves, T., Representations of affine truncations of representation involutive-semirings of Lie algebras and root systems of higher type (2010), University of Alberta, MSc thesis
[33] Iyama, O.; Oppermann, S., Stable categories of higher preprojective algebras, Adv. Math., 244, 23-68 (2013) · Zbl 1338.16018
[34] Izumi, M., Application of fusion rules to classification of subfactors, Publ. Res. Inst. Math. Sci., 27, 953-994 (1991) · Zbl 0765.46048
[35] Kauffman, L. H., State models and the Jones polynomial, Topology, 26, 395-407 (1987) · Zbl 0622.57004
[36] Kirillov, A.; Ostrik, V., On a q-analogue of the McKay correspondence and the ADE classification of \(\mathfrak{sl}_2\) conformal field theories, Adv. Math., 171, 183-227 (2002) · Zbl 1024.17013
[37] Kuperberg, G., Spiders for rank 2 Lie algebras, Commun. Math. Phys., 180, 109-151 (1996) · Zbl 0870.17005
[38] Lehrer, G. I.; Zhang, R., On endomorphisms of quantum tensor space, Lett. Math. Phys., 86, 209-227 (2008) · Zbl 1213.17015
[39] Lehrer, G. I.; Zhang, R., A Temperley-Lieb analogue for the BMW algebra, (Representation Theory of Algebraic Groups and Quantum Groups. Representation Theory of Algebraic Groups and Quantum Groups, Progress in Mathematics, vol. 284 (2010)), 155-190 · Zbl 1260.16030
[40] Malkin, A.; Ostrik, V.; Vybornov, M., Quiver varieties and Lusztig’s algebra, Adv. Math., 203, 514-536 (2006) · Zbl 1120.16015
[41] Martin, P.; Woodcock, D., The partition algebras and a new deformation of the Schur algebras, J. Algebra, 203, 91-124 (1998) · Zbl 0923.20009
[42] Morrison, S.; Peters, E.; Snyder, N., Skein theory for the \(D_{2 n}\) planar algebras, J. Pure Appl. Algebra, 214, 117-139 (2010) · Zbl 1191.46051
[43] Morrison, S.; Peters, E.; Snyder, N., Categories generated by a trivalent vertex, Sel. Math., 23, 817-868 (2017) · Zbl 1475.18025
[44] Murakami, J., The Kauffman polynomial of links and representation theory, Osaka J. Math., 24, 745-758 (1987) · Zbl 0666.57006
[45] Ocneanu, A., Quantum Symmetry, Differential Geometry of Finite Graphs and Classification of Subfactors, University of Tokyo Seminary Notes, vol. 45 (1991), (notes recorded by Y. Kawahigashi)
[46] Ocneanu, A., Higher Coxeter systems (2000), talk given at MSRI
[47] Ocneanu, A., The classification of subgroups of quantum \(\operatorname{SU}(N)\), (Quantum Symmetries in Theoretical Physics and Mathematics. Quantum Symmetries in Theoretical Physics and Mathematics, Bariloche, 2000. Quantum Symmetries in Theoretical Physics and Mathematics. Quantum Symmetries in Theoretical Physics and Mathematics, Bariloche, 2000, Contemp. Math., vol. 294 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 133-159 · Zbl 1193.81055
[48] Ostrik, V., Module categories, weak Hopf algebras and modular invariants, Transform. Groups, 8, 177-206 (2003) · Zbl 1044.18004
[49] Ostrik, V., Module categories over the Drinfeld double of a finite group, Int. Math. Res. Not., 27, 1507-1520 (2003) · Zbl 1044.18005
[50] Pugh, M., Frobenius algebras from CFT, paper presented to Workshop on Subfactors, Higher Geometry, Higher Twists and Almost Calabi-Yau Algebras, INI Cambridge, 27-31 March 2017
[51] Rehren, K.-H., Braid group statistics and their superselection rules, (The Algebraic Theory of Superselectionsectors. The Algebraic Theory of Superselectionsectors, Palermo, 1989 (1990), World Scientific: World Scientific Singapore), 333-355
[52] Schellekens, A. N.; Yankielowicz, S., Extended chiral algebras and modular invariant partition functions, Nucl. Phys., 327, 673-703 (1989)
[53] Schellekens, A. N.; Yankielowicz, S., Simple currents, modular invariants and fixed points, Int. J. Mod. Phys. A, 5, 2903-2952 (1990) · Zbl 0706.17012
[54] Spiridonov, V. P.; Zhedanov, A. S., Zeros and orthogonality of the Askey-Wilson polynomials for q a root of unity, Duke Math. J., 89, 283-305 (1997) · Zbl 0882.33007
[55] Suciu, L. C., The \(S U(3)\) Wire Model (1997), Pennsylvania State Univ., PhD thesis
[56] Toledano Laredo, V., Positive energy representations of the loop groups of non simply connected Lie groups, Commun. Math. Phys., 207, 307-339 (1999) · Zbl 0969.22010
[57] Turaev, V. G., Quantum Invariants of Knots and 3-Manifolds, de Gruyter Studies in Mathematics, vol. 18 (1994), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin · Zbl 0812.57003
[58] Wenzl, H., Hecke algebras of type \(A_n\) and subfactors, Invent. Math., 92, 349-383 (1988) · Zbl 0663.46055
[59] Xu, F., New braided endomorphisms from conformal inclusions, Commun. Math. Phys., 192, 349-403 (1998) · Zbl 0908.46044
[60] Yamagami, S., A categorical and diagrammatical approach to Temperley-Lieb algebras
[61] Yamagata, K., Frobenius algebras, (Handbook of Algebra, vol. 1 (1996), Elsevier: Elsevier Amsterdam), 841-887 · Zbl 0879.16008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.